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ABSTRACT 
Neutrophil extracellular trap (NET) formation is an alternate immunologic weapon used mainly by neutrophils. Chromatin 
backbones fused with proteins derived from granules are shot like projectiles onto foreign invaders. It is thought that this 
mechanism is highly anti-microbial, aids in preventing bacterial dissemination, is used to break down structures several 
sizes larger than neutrophils themselves, and may have several more uses yet unknown. NETs have been implied to be 
involved in a wide array of systemic host immune defenses, including sepsis, autoimmune diseases, and cancer. Existing 
methods used to visually quantify NETotic versus non-NETotic shapes are extremely time-consuming and subject to user 
bias. These limitations are obstacles to developing NETs as prognostic biomarkers and therapeutic targets. We propose an 
automated pipeline for quantitatively detecting neutrophil and NET shapes captured using a flow cytometry-imaging 
system. Our method uses contrast limited adaptive histogram equalization to improve signal intensity in dimly illuminated 
NETs. From the contrast improved image, fixed value thresholding is applied to convert the image to binary. Feature 
extraction is performed on the resulting binary image, by calculating region properties of the resulting foreground 
structures. Classification of the resulting features is performed using Support Vector Machine. Our method classifies NETs 
from neutrophils without traps at 0.97/0.96 sensitivity/specificity on 387n =  images, and is 1500X faster than manual 
classification, per sample. Our method can be extended to rapidly analyze whole-slide immunofluorescence tissue images 
for NET classification, and has potential to streamline the quantification of NETs for patients with diseases associated with 
cancer and autoimmunity.  
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1. INTRODUCTION 
Neutrophils are a type of white blood cell that protect the body from infections. Neutrophils engulf microbes via 
phagocytosis to provide the first level of defense to our body. Such phagocytosis is achieved via various cellular signaling 
mechanisms[1]. Neutrophil extracellular trap (NET) formation is an alternative method used by neutrophils to aid in 
controlling infection of extracellular (non-phagocytosed) pathogens[2]. NETs are composed of chromatin backbones and 
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neutrophil granular constituents that kill and/or limit the spread of microbes, including bacteria and fungi[3]. NETosis can 
also result in tissue injury and thrombosis, underscoring the importance of regulation of NETs and response to microbes 
and non-infectious stimuli, including the release of pro-inflammatory products from cellular injury[4]. Moreover, NETs 
have been implicated in the pathogenesis of a wide array of diseases caused by inflammatory injury, including sepsis, 
autoimmune diseases, and cancer[5, 6]. There is considerable interest in developing new therapeutic approaches that target 
NETs, including the development of small molecule inhibitors of pathways required for NETosis. Conversely, there is also 
substantial interest in exploiting NET constituents to augment host defense in patients with immune impairment.  

Proper exploration of NETs as therapeutic agents requires high throughput analysis of neutrophils under varying biological 
conditions. Existing methods used to visually quantify NETotic versus non-NETotic neutrophil shapes are extremely time-
consuming and subject to user bias. The sole computational method in the literature pertaining to NET imaging explores 
quantifying NET fractions in in vitro microscopic images of mixture of neutrophils and NETs[7]. However, this method 
does not consider estimating the NETs’ morphology, quantification of which is important to understand the implications 
and functions of NETs, allowing identification of early digital biomarkers to slow down disease progression. The lack of 
an efficient and reproducible automatic NET characterization scheme hinders the development of NETs as prognostic 
biomarkers and therapeutic targets for diverse diseases. We have therefore developed an automated method to 
automatically detect and quantify the shapes of NETs in flow cytometry images, to aid in clinical assessment. Our method 
is simple to implement and has potential to rapidly identify and characterize the fraction of a neutrophil population that 
has formed a NET.  

In the current manuscript, our method first starts with raw fluorescence images of neutrophils stained with DRAQ5 and 
imaged using a flow cytometry system. Each individual image is contrast enhanced, binarized, and fit with a convex hull[8]. 
Next, the area, average intensity, and eccentricity of the convex region are quantified. Shape features are classified using 
a support vector machine with radial basis kernel and generalizability is analyzed with 10-fold cross validation[9]. The end 
output is images classified as NETotic or non-NETotic. In the next sections, we summarize our results and methods. Our 
future work will explore quantifying NETotic features from immunofluorescence images of murine tissue slices.  
 

2. METHODS 
This section contains details on the preparation of neutrophils, neutrophil images, and imaging conditions and setup. 
Subsequently, processing of neutrophil fluorescence images and characterization of NET structures are discussed. We 
conclude the section by discussing the classification method of extracted structural features along with our analysis in 
evaluating the proposed classifier’s performance. 

2.1. Image preparation 

Neutrophils were isolated from normal donor blood and stimulated in vitro for two hours with phorbol myristate acetate 
(Sigma-Aldrich, St. Louis, MO) as a positive control for NET generation. The procedure followed a protocol approved by 
Institutional Review Board at Roswell Park Cancer Institute, Buffalo, NY. The cells were then stained with DRAQ5 (ex/em 
(nm): 681/697; ThermoFisher Scientific, Waltham, MA), and imaged using ImageStream® flow-cytometry system 
(Millipore Sigma, Darmstadt, Germany). The pixel resolution of the captured images was 0.17 µm per pixel. In this 
resolution, a typical NET shape varies from 7-20 µm along the major axis and 1-5 µm along the minor axis, assuming that 
a typical NET shape is elliptical. In contrast, a neutrophil shape is typically circular with 6-7 µm along the diameter.      
2.2. Image preprocessing 

Contrast limited adaptive histogram equalization (CLAHE) method[8] locally adapts the contrast of the input fluorescence 
image of NET or non-NET so that its resulting gray-scale intensity histogram matches a specified probability 
distribution[10]. MATLAB has implemented this method in the function adapthisteq[11]. In our pipeline, we used the target 
distribution to be Rayleigh[8], and all other parameters are left as MATLAB in-built default. The normalized contrast 
improved image is thresholded at 0.5. This threshold value ensures capturing the chromatin tail (white arrow; Fig. 1A) in 
the NET positive images analyzed in this manuscript. The resulting binary image is then passed for feature extraction. 
2.3. Feature extraction 

We first compute the convex hull of the binarized image. The convex hull of a set of points in Euclidean space is the 
smallest convex set which contains all the points. Convex hull accentuates the long, elliptical morphology of NET shapes. 
Area of the input image is defined as the sum of pixels within the convex hull. Normalized convex intensity is defined as 
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the mean intensity of the raw image within the convex hull divided by the area of the convex hull. The convex hull is then 
fit with an ellipse having the same second moments as the region. Eccentricity of this fitted ellipse is used as the third 
feature of the input NETotic or non-NETotic image to be classified. Implementation was done using MATLAB.  
2.4. Feature classification 

The features extracted from each object are passed to a support vector machine (SVM) classifier[9]. To train the SVM, 
MATLAB’s in-built command fitcsvm is used. All parameters are left to default, except for the KernelFunction and 
BoxConstraint parameters. For KernelFunction, we used radial basis function, and the BoxConstraint value is set to be 
100. The former parameter determines the type of kernel function to discriminate the feature space. The latter controls the 
amount of leniency that is allowed when placing the decision boundary between samples of opposite classes that are close 
together in space. The sister function predict is used to perform classification using the generated SVM[12]. Independent 
testing for performance generalizability was performed using 10-fold cross validation. In this technique, 10 successive test 
phases are performed, each time randomly holding out 1/10th of the dataset and training on the rest of the dataset. The 
classifier performance is obtained upon averaging the respective classifier performances over all the 10 phases of the cross-
validation process. 
 

3. RESULTS 

This section discusses first our computational pipeline for extracting features from in vitro NETotic and non-NETotic 
neutrophil images. We then summarize the feature scores (area, eccentricity, and normalized convex intensity) estimated 
from 143 NETotic and 244 non-NETotic neutrophil images. We discuss the result of SVM classification next, and conclude 
this section by providing a brief overview of an end-user interface software built in MATLAB for in vitro NETs 
classification.    

 
Fig. 1. Demonstration of the computational feature extraction method for flow cytometry images containing neutrophil 
extracellular traps (NETs). (A) Fluorescence image of a NETotic neutrophil. White arrow shows extracellular content which 
constitutes a NET. (B) Gray-scale contrast enhanced version of the image shown in (A). (C) Convex hull after thresholding of the image 
shown in (B). (D) Raw intensity of the NET inside the convex hull region obtained in (C). (E) Ellipse fitting of the structure shown in 
(C). (F-K) Identical example of what is shown in (A-E), for a non-NETotic neutrophil image. 

3.1. Computational pipeline 

Fig. 1 demonstrates the computational feature extraction pipeline from flow cytometry images containing NETs and 
neutrophils (non-NETs). Fig. 1A shows a fluorescence image of a neutrophil with its corresponding NET. The trail of 
chromatin wrapped in cytoplasmic content ejected from the cell is marked using a white arrow. First each image is 
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normalized to have value 0-1. Adapting the initial raw intensity distribution to a Rayleigh distribution using contrast limited 
adaptive histogram equalization (CLAHE) implemented in MATLAB[12] improves contrast of the NET images. We noted 
that this contrast enhancement is critical to illuminate NETs which do not demonstrate high intensity and would otherwise 
be lost to the background. Next the convex hull of each binary image is computed (Fig. 1C). Normalized convex intensity 
is defined as sum of raw intensity values within the convex hull divided by its area. NET negative images display a much 
higher value than positive images. This is biologically motivated because the average pixel intensity corresponds to the 
average level of DNA within the convex boundary of an object; further, highly concave objects like NETs enclose more 
negative space within their convex hull than highly convex objects like cell bodies, and thus have a lower average DNA 
content per convex area. The convex hull region shown in Fig. 1C is also fitted with an ellipse, and its major and minor 
axes and eccentricity are taken as features (Fig. 1E). Figs. 1F-1K show feature extraction for an image of neutrophil with 
no extracellular content. As can be seen in Figs. 1E and 1K, the convex shape of a NET is typically larger and more 
elliptical than its sole neutrophil counterpart.  

Table 1. Distribution of extracted features for the proposed pipeline under the specific imaging conditions described in Section 
2.1. Features shown for both NET positive distributions and NET negative distributions, where the feature separation is evident. 

 Convex area (pixels) Eccentricity (a.u.) Normalized convex intensity (a.u.) 

NET 4770 ± 1660 0.89 ± 0.09 0.43 ± 0.12 

Non-NET 1900 ± 300 0.54 ± 0.13 0.79 ± 0.06 

3.2. Feature distribution 

Using the feature extraction method described above, we computationally quantified convex area, eccentricity, and 
normalized convex intensity for 143 NETotic and 244 non-NETotic manually annotated images. Manual annotation was 
performed by the authors Mr. Brandon Ginley and Ms. Tiffany Emmons under the supervision of Dr. Brahm Segal. For 
the image resolution described in Section 2.1, we report the respective NETotic features in Table 1. Fig. 2A shows the 
binary classification task as a 3D scatter representation of these features. Owing to the excellent separability between NET 
vs non-NET shape features, we employed support vector machine (SVM)[9] to automatically classify them from their flow 
cytometry images.  

 
Fig. 2. Classification of NETs’ shapes. (A) Scatter of convex area, eccentricity, and normalized convex intensity of NETs and non-
NETs. (B) Classification of NETs using support vector machine, packaged as an end user graphical interface.  
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The SVM classification method is able to achieve 0.96/0.97 sensitivity/specificity in our limited dataset of 387 images, 
quantified using 10-fold cross validation. See Section 2.4 for more information on the cross-validation performance 
analysis described herein. While no other commercially available automated method exists for NET morphology 
classification, the IDEAS® software, a commercial software package that comes with ImageStream® flow-cytometer, is 
trained for automatic identification of NETs[13]. Our automated method outperforms the ImageStream® based method; this 
latter method achieves 0.92/0.93 sensitivity/specificity. Further, ImageStream® cannot assign a class label to 13% of the 

387n = images, while our method labels 100% of the NETs images. The computational speed of our method implemented 
in MATLAB was found to be >1500X faster than manual classification of NETs conducted by co-author Ms. Tiffany 
Emmons. Specifically, our method requires 0.00269 seconds to classify a NET from non-NET, while manual classification 
process requires 4.13 sec for the same task.   
3.4. End user interface 

Fig. 2B shows an end user graphical interface developed for the proposed method. Users need to provide the folder of 
input images to analyze, and the features of every image can be calculated. Once the features are calculated, classifying 
the images will generate two new folders with the NET objects separated from the non-NET ones. Classification is done 
using the SVM classifier trained on the manually labeled 387 images. Users also have the option of training new SVM 
classifiers, provided they have manually annotated their data set into two populations. Additionally, the SVM training 
function allows users to decide how strictly the separating hyperplane is drawn. Too high of a strictness allows minimum 
samples to be misclassified, but is too specific and not generalized. Strictness too low may yield sub-optimal performance. 
 

4. DISCUSSION 
Throughout this manuscript, we claim that our method supersedes the performance of the IDEAS® classifier bundled with 
ImageStream®. Though we found this to be true for our 387 images, they stem from one common dataset. It is noteworthy 

to stress that the current study is a pilot study 
with simulated in vitro data and limited scope 
just to demonstrate the feasibility of our 
proposed pipeline. A detailed analysis on 
statistical significance as compared to the 
IDEAS® software using multiple datasets will 
be conducted in future works. As we analyze the 
performance of our method in more unique 
datasets, we will use further independent testing 
to objectively compare both methods, and 
generate receiver operating characteristic 
curves for both methods. 

As discussed in Section 1, NETs are implicated 
to be involved in a wide array of diseases. 
However, inaccessibility of an automated 
method to identify and quantify NETs hinders 
the research community from rapidly 
unraveling the molecular mechanisms of NETs 
in large in vitro and in vivo samples. We have 
developed a high throughput computational 
method to quantify NETs in vitro that preserves 
NET morphology. This method leverages the 
inherent morphological dissimilarity of 
neutrophils and NETs to assign a class label. 
High throughput is crucial for rapid analysis of 
large neutrophilic populations and their 
response to a variety of biological perturbations. 
Knowing the fraction of a neutrophil population 
which undergoes NET formation will be 

extremely beneficial in developing NETs as prognostic markers and therapeutic targets. This has already been 

 
Fig. 3. In vivo immunofluorescence image of NETosis in a mouse model of 
aspergillus fumigatus pneumonia. Blue color depicts DNA tagged with DAPI 
stain (ex/em (nm): 358/461). Red color is Alexa Fluor® 568 (ex/em (nm): 
578/603) marking myeloperoxidase. Green color marks histone H1 using Alexa 
Fluor® 488 (ex/em (nm): 490/525). NETosis is marked with white arrows. The 
amorphous, abstract shape of NETs in vivo is much more heterogeneous than 
the in vitro case discussed in this manuscript. Details of the in vivo data 
preparation method as depicted in this figure are  discussed in a previous 
publication by co-author Dr. Urban[1].  

  

10 µm 

3.3. Support vector machine classification 
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accomplished by authors in the past[7], however, this method does not preserve morphology. We believe that the 
morphology of NETs is fundamental to fully perceive its biological mechanism, function, and response to environmental 
influence. Our method is simple, intuitive, and biologically motivated by the morphology of neutrophils and NETs. Its 
simplicity increases receptiveness for all researchers, and allows derivation of computationally inspired biological 
hypotheses. 

Though simple morphological operations can derive efficient features to identify NETs in vitro, there is a much greater 
challenge working with in vivo data. Fig. 3 depicts an immunofluorescent section of mouse lung challenged with 
aspergillus fumigatus pneumonia. This image data was provided by the co-author Dr. Urban, and prepared under the 
protocol described in Ref. [1]. NETosis is marked in white arrows. Due to the extreme heterogeneity and amorphous nature 
of in vivo NETs, identification of in vivo NETosis will require an extension to our current method. Further, NETs are 
closely entangled with other structures in the cellular microenvironment which will require separation. We envision a 
method which derives both fluorescent marker based features in combination with morphological features will provide 
sufficient information to identify in vivo NETosis using popular machine learning methods. Finally, we will make a 
correlation between different stages of NETs and understand how they are impacted under various pathological 
perturbations. 
 

5. CONCLUSION 
We present an automated and reproducible classification method for neutrophil extracellular traps in vitro using flow 
cytometry. Our method can be extended to rapidly analyze whole-slide immunofluorescence tissue images comprising 
trillions of pixels for NET shape classification and for deriving structural motif distributions of these immunological 
features. Future computational advancement will seek to analyze the proposed method’s performance in multiple datasets, 
and will extend to identify NETs in vivo. Future health science advancement will evaluate this technology in identifying 
and quantifying NETs samples from patients with NET associated diseases, such as cancer and autoimmunity. 
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