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ABSTRACT 
The glomerulus is the primary compartment of blood filtration in the kidney. It is a sphere of bundled, fenestrated 
capillaries that selectively allows solute loss. Structural damages to glomerular micro-compartments lead to 
physiological failures which influence filtration efficacy. The sole way to confirm glomerular structural damage in 
renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light 
microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the 
number and volume of structures. Computational image analysis is the perfect tool to ease this burden. The major 
obstacle to development of digital histopathological quantification protocols for renal pathology is the extreme 
heterogeneity present within kidney tissue. Here we present an automated computational pipeline to 1) segment 
glomerular compartment boundaries and 2) quantify features of compartments, in healthy and diseased renal tissue. 
The segmentation involves a two stage process, one step for rough segmentation generation and another for 
refinement. Using a Naïve Bayesian classifier on the resulting feature set, this method was able to distinguish 
pathological stage IIa from III with 0.89/0.93 sensitivity/specificity and stage IIb from III with 0.7/0.8 
sensitivity/specificity, on n = 514 glomeruli taken from n = 13 human biopsies with diagnosed diabetic nephropathy, 
and n = 5 human renal tissues with no histological abnormalities. Our method will simplify computational partitioning 
of glomerular micro-compartments and subsequent quantification. We aim for our methods to ease manual labor 
associated with clinical diagnosis of renal disease. 
 
Key-words: Glomerulus, digital quantification, diabetic nephropathy, automated computation, feature extraction, 
segmentation, histology, kidney, naïve Bayes 
 

1. INTRODUCTION 
The kidney is the organ responsible for filtering solutes out of the blood into urine. The glomerulus (~200 µm in 
diameter in health) handles the initial filtration of blood to primary filtrate, and is usually the first structure to be 
damaged in disease[1]. The glomerulus, structurally, is a bundle of fenestrated capillaries encapsulated by a luminous 
collecting duct. Blood solutes are filtered first through endothelial fenestrations, then selectively filtered by the 
glomerular basement and visceral epithelial cells (podocytes), after which they are collected in the urinary space. From 
here, solutes are selectively reabsorbed and everything else is released to the urine. Each human kidney contains 
approximately 900,000 to 1 million nephrons, each of which is attached to a glomerulus[2]. Damage to any of the basic 
glomerular compartments leads to instability within the glomerulus that is characteristic of renal disease and failure[3]. 
Diabetic nephropathy (DN) is a structural glomerular disease, characterized by progressive mesangial space 
expansion, thickening of basement membranes, and loss of resident cell nuclei. DN can lead to renal failure and 
death[4]. Medicare reports there are approximately 525K U.S. patients with end stage kidney failure, the care for whom 
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amounts over $24 billion[5, 6]. The center for disease control (CDC) projects one in three Americans will have diabetes 
by 2050 if current trends continue[7]. Approximately 20-30% of diabetics will develop evidence of nephropathy[8]. The 
main barrier to improvement of care is the lack of disease markers which can identify disease states early enough such 
that therapeutic interventions may be initiated to lead to better outcomes[9]. The most important clinical technique to 
identify glomerular structural damage is imaging of the renal biopsy. While this approach is the gold standard in clinic, 
it is time consuming, tedious, and semi-quantitative. The highly complex structure of renal tissue creates these issues 
and has hindered robust computational quantification methods from being developed in the past.  

Some examples of clinically relevant glomerular micro-compartmental changes include glomerular volume, podocyte 
effacement and death, changes in mesangial cellularity and matrix volume, and lumen content[3]. Automatic estimation 
of these features using computational resources requires development of novel techniques to accurately segment the 
glomerular boundary, the boundary of luminal compartments, the boundary of mesangium, and the boundary of nuclei. 
We have developed a glomerular boundary segmentation method in our previous work[10]. In this work, we hand 
segment the glomerular boundaries, as the focus is not on developing a glomerular boundary segmentation pipeline 
but rather analyzing differences in healthy and disease DN renal tissue.  Further, we have developed a simple technique 
using classical methods to achieve accurate glomerular compartment segmentations with high accuracy for Periodic 
Acid-Schiff stained renal tissue. This technique consists of standard color transformations and automated thresholding 
to develop a preliminary segmentation, followed by a naïve Bayesian classification based correction of the 
segmentation. Stain deconvolution[11] is used to identify the nuclei, mesangial, and membranous components. L*a*b* 
transformation and Otsu’s thresholding is used to identify luminal compartments. From the segmented glomerular 
compartments, we have extracted an array of texture and morphological features that are capable of delineating DN 
clinical stage. We trained a naïve Bayesian classifier to differentiate DN class based on the extracted features. The 
classifier achieves optimal performance for determining stage IIa from III with 0.89 sensitivity and 0.93 specificity. 
The classifier for IIb from III achieves optimal performance scoring 0.7 sensitivity and 0.8 specificity (Fig 3). 

We have developed a structural feature quantification pipeline for glomeruli taken from DN diseased human biopsy 
tissues, stained with periodic acid-Schiff. This technique is particularly simple, and can easily be transferred to other 
research easily. This technique can easily be extended to other staining types, and possibly to other tissue systems as 
well. Our ultimate aim is to provide a faster statistical sampling in clinical pathology than the current practice, while 
ensuring accuracy and precision in diagnosis. Our work aims to motivate the development of digital protocols which 
quantify glomerular features and motivate the shift of renal pathology to a computational era. 
 

2. RESULTS 
2.1. Glomerular segmentation  

Fig. 1 shows a demonstration of typical segmentations for the glomeruli used in this work. Fig. 1A shows an original 
glomerulus. The boundary between the glomerulus and surrounding tubules was segmented manually, shown in Fig. 
1B. Before the glomerulus is isolated, each image is transformed to both L*a*b* space[12]. Luminal components are 
segmented through Otsu’s thresholding[12] of the L* component of the L*a*b* color space, Fig. 1C. To isolate 
mesangial components, stain deconvolution for PAS components is used, shown in Fig. 1D. Resulting intensity image 
is thresholded using local adaptive thresholding. Nuclei in the image are delineated through stain deconvolution, 
resulting in an intensity image, Fig. 1E, which is segmented using a local adaptive threshold. This segmentation leaves 
some intra-glomerular pixels unlabeled, shown in binary in Fig. 1G. To classify these pixels, a naïve Bayesian 
classifier[13] is trained on the already segmented pixels. The Naïve Bayesian classifier is then used to predict the class 
labels of remaining glomerular pixels. The final segmentation is shown in Fig. 1H.   

2.2. Feature extraction  

We have hand-constructed a computational feature set with the intention of describing the inherent structural 
progression of DN glomeruli. Some of these features are based in texture analysis, some are morphological, some are 
distance based, and some have been hand crafted to theoretically accentuate proper glomerular structural 
conformation. In total, 47 features were extracted from each glomerulus.  

2.3. Singular value decomposition  

A singular value decomposition[14] was performed on the original 47 features extracted from each glomerulus 
originated from one of the five stages of diabetic nephropathy[15]. We used the first 25 eigenvalues to train a naïve 
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Bayesian classifier to differentiate DN disease states. The first three principal feature axes of these features are plotted 
in Fig. 2, stratified by pairwise consecutive disease states. 

2.4. Naïve Bayesian classification  

To estimate the classification performance of the principal features to differentiate two different disease states, we 
trained two naïve Bayesian classifiers to differentiate between stage IIa and III as well as IIb and III. Structural disease 
state of each glomerulus was labeled by Dr. Kuang-Yu Jen, a licensed renal pathologist, who attempted to place each 
glomerulus into the DN stage[15] it most closely resembled (I, IIa, IIb, III, or IV). Because stage IV requires >50% of 
biopsied glomeruli to be fully sclerosed, any glomerulus that was fully sclerosed was labeled class IV. Out of n = 514 
total glomeruli, 36 were classified as stage IIa, 94 as stage IIb, and 101 as stage III. Both classifiers treated 50% of 
the data as holdout and 50% as training data. One Naïve Bayesian model was able to identify stage IIa glomeruli from 
stage III glomeruli with 0.89/0.93 sensitivity/specificity. The other naïve Bayesian model was able to identify stage 
IIb glomeruli from stage III glomeruli with 0.7/0.8 sensitivity/specificity. The complete receiver operating curves can 
be seen in Fig. 3. The classifier for stage IIa from III is particularly efficient, scoring 0.97 area under curve (AUC). 
 

3. METHODS 
3.1. Human data 

Biopsy samples from 13 unique human patients with diabetic nephropathy with chronic kidney disease stages II and 
III were used. Part of these samples (n = 7) were collected from Kidney Translational Research Center at Washington 
University School of Medicine directed by co-author Dr. Jain, and digital images of the rest came from co-author Dr. 
Fogo. Thin renal tissue samples with no apparent histological abnormalities from 5 patients were used as control. 
Three of the cases here came from Dr. Jain, and digital images of the rest from Dr. Fogo. Human data collection 
procedure followed a protocol approved by the Institutional Review Board at University at Buffalo.  

 

 
Figure 1. Demonstration of segmentation pipeline. (A) Original image. (B) Image after manual segmentation. (C) L* 
component of L*a*b* space delineating luminal space. (D) Color deconvolution for PAS. (E) Color deconvolution for 
hematoxylin. (F) Segmentation before correction by the naïve Bayesian classification. (G) Pixels to be classified by the naïve 
Bayesian classification. (H) Final segmentation. 
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Figure 2. Scatter plot of top three singular vectors of 47 dimensional feature space, stratified by pairwise disease state. (A) 
Structure of control glomeruli versus stage I. (B) Glomerular structures for stage I versus stage IIa. (C) Stage IIa versus stage IIb. 
(D) Stage IIb versus III. (E) Stage III versus IV.  
 

 
Figure 3. Receiver operating curves for Naïve Bayesian disease classification. (A) Classification of stage IIa from stage III. (B) 
Classification of stage IIb from III. 

3.2. Imaging and data preparation  

Tissue slices of 2-5 µm were stained using Periodic acid-Schiff, and imaged using a whole-slide imaging scanner 
(Aperio Versa, Leica, Buffalo Grove, Il). Similar imaging protocol was followed as described in our earlier works[16]. 
Glomeruli images were manually segmented from each biopsy section for the analysis.  

3.3. Ground-truth annotation and segmentation 

Glomerulus wise ground-truth annotations of DN structural disease state was performed by the co-author Dr. Kuang-
Yu Jen. Fig. 4 demonstrates one example glomerulus from each disease classification. Fig. 4A shows a Stage I 
(healthy/minimal damage) glomerulus, 4B shows stage IIa, 4C shows stage IIb, 4D shows stage III, and 4E shows 
stage IV. Staging was done following definition available in the literature[15]. 
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Figure 4. Examples of annotated glomeruli. A. Stage I/healthy. B. Stage IIa. C. Stage IIb. D. Stage III. E. Stage IV. 

3.4. Color space transformation 

Color space transformations performed in this work are standard. Transformation of RGB color space to LAB was 
performed with using the MATLAB image analysis toolbox. Stain deconvolution was performed using the method 
developed by Ruifrok et al.[11]. 

3.5. Thresholding  

Otsu’s thresholding is a standard technique used in image analysis to identify foreground pixels from background 
when there is a distinct bimodal pixel distribution[17]. Otsu’s method seeks to minimize the intra-class variance 
resultant of any one particular threshold. Otsu’s thresholding was performed with the MATLAB image analysis 
toolbox. Otsu’s threshold method was used to determine luminal segmentations. Adaptive thresholding[18] was 
performed for mesangial and nuclear segmentations, and performs thresholding in a local window rather than globally. 

3.6. Feature extraction 

In total, n = 47 features were extracted from each glomerulus, including textural, morphological, and distance 
descriptions, as well as compartmental containment ratios.  

Textural features are calculated on mesangial segmentations and on luminal segmentations. Nuclei were excluded 
from texture analysis because classification of nuclear texture is a highly complex issue in its own right, dependent 
on position within the tissue, level of nuclear cut, stain type, transcription status, cell type, etc., and is outside the 
scope of this manuscript. A linear weighted combination of red, green, and blue channels yields a grayscale image 
suitable for gray level co-occurrence analysis. Textural entropy, correlation, contrast, and homogeneity were derived 
from the image gray-level co-occurrence matrix. 

Morphological features include the mean area, median area, mode of areas, and convexity for identified compartment 
objects treated separately (e.g., one single nucleus, isolated piece of mesangium, or capillary lumen). 

Distance features are comprised of averaged distances between compartments and other glomerular compartments or 
landmarks. Glomerular landmarks include the estimated glomerular centroid and the estimated glomerular boundary. 
The following distance features are extracted for each object: 1) the distance between that object’s centroid and similar 
objects’ centroids, 2) the distance to the glomerular boundary, 3) the distance to the glomerular centroid. For each of 
these categories, average, minimum, and maximum distances were recorded. 

Compartmental containment features revolve around analyzing the relationship between the structures of the 
glomerulus itself. First, each identified lumenal or mesangial compartment is isolated from other compartments. Then, 
the convex hull of that object is taken. Nuclei, mesangium, or lumen segmentations that fall within this convex 
boundaries are also extracted and their area recorded. The ratio between the area of the convex object and the area of 
other compartments enclosed within its boundary become compartmental overlap features. This feature extraction 
method was applied to all luminal and mesangial sections, and examined the contained amount of luminal, mesangial, 
or nuclear area contained within. Logically, nuclei contain no other compartments within themselves. For any one 
nucleus, two features are derived by calculating the fraction of pixels that fall on the nuclear boundary which were 
segmented as 1) lumen or 2) mesangium. These serve to primarily help the computer understand fractional nuclear 
composition of each glomerulus. 
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3.7. Feature reduction.  

Principal component analysis is ideal to reduce the dimensionality of an original feature space. However, since the 
feature space was not full rank, principal component analysis is not applicable, and singular value decomposition is 
used instead[19]. We found that approximately 25 singular vectors must be included to represent 99% of the original 
feature space. These 25 vectors were used to train the naïve Bayesian classifiers.  

3.8. Classification. 

The 25 singular vectors and pathologist class labels were used to train respective naïve Bayesian classifiers to 
differentiate any one disease state from another. Hyper parameters of the classification model were iteratively selected 
using an optimization procedure available from the MATLAB Statistics and Machine learning toolbox. Each classifier 
was trained using 50% of the available data as holdout. 

 
4. DISCUSSION 

We show a near-full extraction pipeline for quantification of human glomeruli in renal histology images. We have 
also shown that digitally extracted features are able to train supervised machine learners to detect disease states. 
Though the boundary of the glomerulus was hand segmented in this work, we have demonstrated in the past a working 
pipeline to computationally identify this boundary[16]. Though the computational methods applied are not new, the 
physical quantification of human glomeruli in various states of DN structural disease using computational techniques 
has not been shown in the literature. Our first study suggests that we can precisely and accurately classify disease 
states by integrating information from multi-dimensional feature space composed from glomerular micro-
compartmental structures.  
 

5. CONCLUSION AND FUTURE WORK 
This study shows for the first time that automated computational quantification of glomerular images can yield digital 
features of disease state which can be used for prediction. Automated renal histopathology is the introduction of the 
answer to the current clinical obstacles in renal histopathology. We expect a higher sample population to yield more 
robust description of disease states. Future works will aim to investigate higher sample populations, more diverse 
sample populations, a larger original feature set, and the relationship between structural data and follow-up clinical 
biometrics such as blood sugar, proteinuria, and estimated glomerular clearance. Future work will also investigate the 
ability to predict any one particular glomerular disease state from a continuum of disease states, rather than a binary 
comparison of states. 
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