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ABSTRACT  
We present a rapid, scalable, and high throughput computational pipeline to accurately detect and segment the 
glomerulus from renal histopathology images with high precision and accuracy. Our proposed method integrates 
information from fluorescence and bright-field microscopy imaging of renal tissues. For computation, we exploit the 
simplicity, yet extreme robustness of Butterworth bandpass filter to extract the glomeruli by utilizing the information 
inherent in the renal tissue stained with immunofluorescence marker sensitive at blue emission wavelength as well as 
tissue auto-fluorescence. The resulting output is in-turn used to detect and segment multiple glomeruli within the field-
of-view in the same tissue section post-stained with histopathological stains. Our approach, optimized over 40 images, 
produced a sensitivity/specificity of 0.95/0.84 on n = 66 test images, each containing one or more glomeruli. The work 
not only has implications in renal histopathology involving diseases with glomerular structural damages, which is vital to 
track the progression of the disease, but also aids in the development of a tool to rapidly generate a database of glomeruli 
from whole slide images, essential for training neural networks. The current practice to detect glomerular structural 
damage is by the manual examination of biopsied renal tissues, which is laborious, time intensive and tedious. Existing 
automated pipelines employ complex neural networks which are computationally extensive, demand expensive high-
performance hardware and require large expert-annotated datasets for training. Our automated method to detect 
glomerular boundary will aid in rapid extraction of glomerular compartmental features from large renal histopathological 
images.  

Keywords: Butterworth band-pass filter, Immunofluorescence staining, Multi-modal microscopy imaging, Glomerular 
segmentation, Renal histopathology 
 

1. INTRODUCTION  
The glomerulus, a tuft of capillaries located within the Bowman’s capsule, is the basic filtration unit of the kidney[1]. 
Disruptions in the glomerular structure affects the glomerular filtration barrier, the latter of which is responsible for the 
filtration of blood into urine. This disruption results in proteinuria, a condition characterized by the presence of excessive 
proteins in the urine, a common indicator of several renal diseases. Hence, the histological damages within the glomeruli 
are primarily analyzed by experts while evaluating a renal biopsy, to identify kidney diseases[2]. Moreover, various 
compartments within the glomeruli, such as the mesangial matrix[3], capillary walls[4], and podocytes[5, 6], are the focus of 
several studies to comprehend the changes within the kidney during different disease stages. However, to detect these 
compartments, it is vital to first identify the glomerular boundaries within the whole slide image (WSI) rapidly with high 
accuracy[5].  
 
Automated glomerular segmentation remains a challenge today due to its complex nature and intense variations in size 
and shape within the renal section[7]. Although consistent under normal conditions in vivo, the glomerulus undergoes 
swelling during hypertension[8], hypertrophy[9], and diabetes[10]. Furthermore, the manual tissue sectioning causes 
variations in the sizes of the glomerulus, owing to the variations in sectioning angles. Apart from this, the variations in 
staining intensities further complicates the task. These inconsistent geometrical parameters make it inconvenient to 
develop a single robust algorithm capable of detecting and segmenting all the glomeruli within a tissue section. The 
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current clinical practice for glomerular detection involves the manual observation of histologically stained biopsied 
tissues under a standard bright-field microscope by a pathologist[11], which is time consuming, tedious, subjective and 
requires expertise. 
 
Existing automated methodologies like rectangular-histogram of gradients (R-HOG[12]) descriptors for the segmentation 
of glomeruli[13, 14], employ complex algorithms with rigid block divisions, generating false positives and the other 
common method of employing Gabor texture filters[15], to segment glomeruli, utilize multiple parameters which need to 
be optimized due to the inter-glomerular structural variations within a single tissue slice. The latter also fails to detect 
more than one glomerulus within an image. Other automated techniques employ complex neural networks[16], which 
utilize expensive dedicated hardware and require a large expert-annotated dataset of training images. 
 
We have developed a rapid, high throughput, scalable, and robust computational pipeline, capable of detecting and 
segmenting multiple glomeruli within the field-of-view, using minimal computational complexity, by integrating the two 
different microscopic imaging modalities of immunofluorescence and histology. Our pipeline utilizes the robust yet 
simple Butterworth band-pass filter to exploit previously unexplored innate features of fluorescence photo physical 
properties of DAPI generated and tissue autofluorescence signals, thereby reducing the computational cost and 
complexity when compared to other techniques[16], while generating comparable performance. 
 

The developed method could thereby aid in renal disease diagnosis and tracking of disease progression and therapeutic 
response by alleviating the burden of manual detection of glomeruli within the tissue. It would also aid in the 
development of a tool, capable of rapidly generating glomerular databases by detecting and segmenting them from whole 
slide renal tissue images, which are crucial for training neural networks. Furthermore, it could also be used to extract 
various compartments within the glomerulus, such as the mesangium, the podocytes and the capillary walls which are 
the focus of several studies. 
 

 
Fig 1. Schematic diagram of the computational pipeline used to extract accurate glomerular boundaries. (A) 
Whole-slide image (WSI) of renal tissue section stained via immunofluorescence markers. (B) WSI of the same renal 
section post-stained with Periodic acid-Schiff (PAS). (C) Result of image registration by matching speeded up robust 
features. (D) Extracted image patches containing glomeruli, from registered immunofluorescence WSI. The cell nuclei 
were stained with DAPI (blue). The green signal depicts tissue autofluorescence. (E) Mask generated upon band-pass 
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filtering of the image in Fig. 1D. (F) Image patches from PAS WSI corresponding to the ones shown in Fig. 1D. (G) 
Overlay image of the masks shown in Fig. 1E and the PAS image patch shown in Fig. 1F.  

2. METHODOLOGY 
2.1 Schematic overview 

Fig. 1 shows the proposed computational pipeline to segment glomerular boundaries. Fig. 1A shows the whole slide 
image of a mouse renal tissue section stained with immunofluorescence (IF) markers. The cell nuclei were stained with 
DAPI (ex/em (nm): 358/461) and tissue auto-fluorescence[17] was captured at 488 nm excitation and 525 nm emission. In 
this carefully designed imaging set-up, glomerular regions are demarcated by significantly lower auto-fluorescent signal 
than surrounding tubular regions. This is a direct result of the high numbers of mitochondria found in the cytoplasm and 
in the basal infoldings of tubular epithelial cells[18], which contain autofluorescent molecules such as NADH/NADPH 
and and FADH2[17]. Glomerular residents such as mesangial, endothelial or podocyte cells are not hallmarked by 
abundant mitochondria, thereby providing a huge distinction in their intensities. This inherent biological difference 
within the glomerulus and the surrounding tubules is exploited using a Butterworth band-pass filter[19] to extract solely 
the regions containing glomeruli from the fluorescent tissue image, see Section 2.4. The same renal tissue was post-
stained with Periodic acid-Schiff (PAS), see Fig. 1B. The two whole slide images obtained from two distinct 
microscopic imaging modalities are then registered by matching their speeded up robust features (SURF) features[20] 
(Fig. 1C). Random image patches are selected from the registered IF image, as shown in Fig. 1D and are filtered using 
the Butterworth band-pass filter to detect and segment the glomeruli. The resulting mask indicating the glomerular 
region is shown in binary in Fig. 1E. Fig. 1G shows the PAS image patch of glomerulus corresponding to that shown in 
Fig. 1B. The mask depicted in Fig. 1E is overlaid with the PAS image patch, to highlight the glomerular boundary in 
Fig. 1H. 

2.2 Tissue slicing and image acquisition 

Tissue sample of normal C57BL/6J background mice were used. All animal studies were performed in accordance with 
protocols approved by the University at Buffalo Animal Studies Committee. Tissue slices of 2 µm were stained using 
immunofluorescence markers, and subsequently imaged using a whole-slide imaging fluorescence microscope (Aperio 
Versa, Leica, Buffalo Grove, Il). For immunofluorescence imaging, cell nuclei were stained with DAPI (ex/em (nm): 
358/461) and tissue auto-fluorescence[17] was captured at 488 nm excitation and 525 nm emission. The tissue section was 
post-stained using Periodic acid-Schiff, and imaged in brightfield using the Aperio scanner. Pixel resolution for 
fluorescence imaging was 0.16 µm and for brightfield imaging was 0.13 µm. Other details of tissue preparation, staining, 
and optics configuration used for imaging were remain same as discussed in our earlier works[5]. The computational 
method proposed here has been constructed around this imaging configuration, and the parameter values may change 
proportionally for other imaging conditions. 

2.3 Image registration  

DAPI (pseudo-blue) channel image was extracted and processed to generate a binary image indicating the location of 
nuclei in the registered immunofluorescence image. Similarly, the color deconvolution algorithm[21] was used to extract 
the nuclei locations within the PAS image. These binary images were then registered by matching their SURF 
features[20]. This registration enabled the extraction of various image patches from the IF whole slide image and their 
corresponding PAS stained counterparts. 

2.4 Butterworth band-pass filter 

We used the standard Butterworth band-pass filter[19] with an order of 1n = . The transfer functions of the low pass and 
high pass filter (Eq. (1) and (2), respectively) used to design the Butterworth band-pass filter (Eq. (3)) are:  
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 ( , ) ( , )* ( , )BP LP HPH u v H u v H u v=  (3) 

where, LD  and HD indicate the upper and lower cut off frequencies and ( , )D u v indicates the distance of each pixel 
from the origin. 
 
The lower cut off frequency of the band-pass filter is set to avoid the blank regions within the tissue and the high 
frequency cut off is set to a point that it avoids high frequency noise. The band of frequencies thus selected were 

2.5LD =  and 300HD = , which accurately detects the glomerular region while rejecting the surrounding tubular region 
and interstitial spaces.  The obtained mask (see, Fig. 1E) was overlayed with the corresponding PAS image section (see 
Fig. 1G). 

3. RESULTS 
3.1 Performance evaluation   

 
Figure 2. Segmentation of a glomerulus in a field-of-view. (A) A sample Periodic acid-Schiff image patch containing a glomerulus. 
(B) Corresponding immunofluorescence image patch. (C) Overlay of mask generated by the Butterworth band-pass filter with the 
histopathological image shown in Fig. 2A. 

Our proposed pipeline is able to detect glomerular boundaries, including multiple glomeruli within the same image, with 
a mean sensitivity/specificity 0.95/0.84 over n = 66 images, each containing one or more glomeruli. Ground-truth 
glomerular boundaries were obtained manually. The above performance was obtained by optimizing the cut-off 
frequencies of the proposed band-pass filter. The performance of glomerular segmentation in each of the images from a 
total of n = 66 images are shown in Fig. 3. 

Table 3. Results for different glomerular segmentation methods. 

Method Accuracy (%) Error F1-score/ 

dice 
coefficient 

Sensitivity Specificity Precision 

Butterworth 
band-pass 
filter 

87.31 0.13 0.83 0.95 0.84 0.74 

Gabor filter 88.99 0.11 0.84 0.96 0.87 0.76 

CNN 96.35 0.04 0.95 0.97 0.97 0.93 
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3.2 Comparison 

The performance of our glomerular segmentation was compared with state-of-the-art methods like Gabor texture 
filters[15] designed for glomerular segmentation and deep convolutional neural networks (CNN)[22]. The deep CNN was 
based on fully convolutional AlexNet architecture, trained/validated using 30298/3366 glomeruli images, and the results 
generated were compared with our method, as shown in Table 3. Our method produces comparable results with that of 
state-of-the-art methods, while eliminating the need for complex algorithms and large training databases. 

 
Figure 3. Performance analysis of the proposed pipeline in segmenting glomeruli. (A) Sensitivity, (B) Precision, (C) Specificity, 
(D) F-measure metrics are shown for n = 66 images containing one or more glomeruli. 

4. DISCUSSION 
The proposed pipeline can be used to rapidly generate a database of glomeruli, extracted from whole slide images, 
essential for training neural networks. We have shown for the first time a rapid, high throughput, scalable, and robust 
computational pipeline, integrating two different microscopy image modalities to detect and segment multiple glomeruli 
within the field-of-view in renal histopathology. Our pipeline builds upon exploiting, for the first time, previously 
unexplored innate features of fluorescence photo-physical properties of DAPI generated and tissue autofluorescence 
signals. We are currently studying the performance of the proposed method in diverse murine and human renal 
histopathology conditions, result of which will be published in a future journal publication. 
 
Several possible applications of the proposed method can be considered. In the future, we plan to extend the study by 
including images of structurally damaged glomeruli by diseases like diabetic nephropathy for analysis. We wish to 
eventually modify the pipeline into an automated whole-slide glomerular segmentation algorithm, which can be easily 
translated to clinics for rapid and accurate diagnosis. Moreover, the glomerular segmentation could further aid in 
calculating the cell density per glomerulus, which is often used as a diagnostic tool for renal diseases[23, 24]. 

5. CONCLUSION 
This study shows for the first time that the inherent properties of immunofluorescence staining of renal tissues can be 
used for automated glomeruli detection within histopathological images. Automated detection and segmentation of 
glomerular boundaries can help establish pipelines that further detect individual components within the glomerulus from 
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whole-slide images. The resulting feature distributions would enable studying glomerular disease progression in an 
unbiased and quantitative fashion. 

6. ACKNOWLEDGEMENT 
This project was supported partially by the faculty start-up fund from the Pathology & Anatomical Sciences Department, 
Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (UB), partially by the UB IMPACT award, 
and partially by the DiaComp Pilot and Feasibility Program grant #32307-5. We thank NVIDIA Corporation for the 
donation of the Titan X Pascal GPU used for this research (NVIDIA, Santa Clara, CA). 

REFERENCES 

[1] Smith, H. W., [The kidney: structure and function in health and disease], Oxford University Press, USA, 
(1951). 

[2] Sarder, P., Ginley, B. and Tomaszewski, J. E., “Automated renal histopathology: Digital extraction and 
quantification of renal pathology,” Proceedings of SPIE (SPIE Medical Imaging 2016: Digital Pathology), 
9791, 97910F: 1-12 (2016). 

[3] Fogo, A. B., “Mesangial matrix modulation and glomerulosclerosis,” Nephron Experimental Nephrology, 7(2), 
147-159 (1999). 

[4] Wolf, G., Chen, S. and Ziyadeh, F. N., “From the periphery of the glomerular capillary wall toward the center 
of disease,” Diabetes, 54(6), 1626-1634 (2005). 

[5] Ginley, B., Tomaszewski, J. E., Yacoub, R. et al., “Unsupervised labeling of glomerular boundaries using 
Gabor filters and statistical testing in renal histology,” Journal of Medical Imaging, 4(2), 021102: 1-12 (2017). 

[6] Kriz, W., Gretz, N. and Lemley, K. V., “Progression of glomerular diseases: is the podocyte the culprit?,” 
Kidney international, 54(3), 687-697 (1998). 

[7] Nyengaard, J. and Bendtsen, T., “Glomerular number and size in relation to age, kidney weight, and body 
surface in normal man,” The Anatomical Record, 232(2), 194-201 (1992). 

[8] Hughson, M. D., Puelles, V. G., Hoy, W. E. et al., “Hypertension, glomerular hypertrophy and nephrosclerosis: 
the effect of race,” Nephrology Dialysis Transplantation, 29(7), 1399-1409 (2013). 

[9] Saphir, O., “The state of the glomerulus in experimental hypertrophy of the kidneys of rabbits,” The American 
journal of pathology, 3(4), 329 (1927). 

[10] Rasch, R., Lauszus, F., Thomsen, J. S. et al., “Glomerular structural changes in pregnant, diabetic, and 
pregnant‐diabetic rats,” Apmis, 113(7‐8), 465-472 (2005). 

[11] Agarwal, S., Sethi, S. and Dinda, A., “Basics of kidney biopsy: A nephrologist's perspective,” Indian journal of 
nephrology, 23(4), 243 (2013). 

[12] Dalal, N. and Triggs, B., "Histograms of oriented gradients for human detection." 1, 886-893. 
[13] Hirohashi, Y., Relator, R., Kakimoto, T. et al., “Automated quantitative image analysis of glomerular desmin 

immunostaining as a sensitive injury marker in spontaneously diabtic torii rats,” J Biomed Image Process, 1(1), 
20-8 (2014). 

[14] Kakimoto, T., Okada, K., Fujitaka, K. et al., “Quantitative analysis of markers of podocyte injury in the rat 
puromycin aminonucleoside nephropathy model,” Experimental and Toxicologic Pathology, 67(2), 171-177 
(2015). 

[15] Ginley, B., Tomaszewski, J. E., Yacoub, R. et al., “Unsupervised labeling of glomerular boundaries using 
Gabor filters and statistical testing in renal histology,” Journal of Medical Imaging, 4(2), 021102-021102 
(2017). 

[16] Pedraza, A., Gallego, J., Lopez, S. et al., "Glomerulus classification with convolutional neural networks." 839-
849. 

[17] Sarder, P., Maji, D. and Achilefu, S., “Molecular Probes for Fluorescence Lifetime Imaging,” Bioconjugate 
Chemistry, (2015). 

[18] Weinberg, J. M. and Molitoris, B. A., “Illuminating mitochondrial function and dysfunction using multiphoton 
technology,” J Am Soc Nephrol, 20(6), 1164-6 (2009). 

[19] Gonzalez, R. C. and Woods, R. E., [Digital Image Processing], Prentice Hall, 1-976 (2007). 

Proc. of SPIE Vol. 10581  1058114-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

[20] Bay, H., Ess, A., Tuytelaars, T. et al., “Speeded-Up Robust Features (SURF),” Computer Vision and Image 
Understanding, 110(3), 346-359 (2008). 

[21] Ruifrok, A. C. and Johnston, D. A., “Quantification of histochemical staining by color deconvolution,” 
Analytical and quantitative cytology and histology, 23(4), 291-299 (2001). 

[22] Jia, Y., Shelhamer, E., Donahue, J. et al., [Caffe: Convolutional Architecture for Fast Feature Embedding] 
ACM, Orlando, Florida, USA(2014). 

[23] Steffes, M. W., Schmidt, D., Mccrery, R. et al., “Glomerular cell number in normal subjects and in type 1 
diabetic patients,” Kidney international, 59(6), 2104-2113 (2001). 

[24] Pagtalunan, M. E., Miller, P. L., Jumping-Eagle, S. et al., “Podocyte loss and progressive glomerular injury in 
type II diabetes,” Journal of Clinical Investigation, 99(2), 342 (1997). 

 

Proc. of SPIE Vol. 10581  1058114-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


