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ABSTRACT 
Ki-67 index is an important diagnostic factor in gastrointestinal neuroendocrine tumor (GI-NET). The 
current gold standard for grading GI-NETs involves the visual screening of histopathologically stained 
tissues, for hot-spots containing high amounts of proliferating tumor cells (stained with Ki-67 
antibody). Subsequently, the Ki-67 index, i.e. the percentage of proliferating tumor cells within the 
hot-spot is manually obtained. To automate this subjective and time consuming process, we have 
developed an integrated pipeline, termed SKIE (synaptophysin-Ki-67 index estimator), combining 
double-immunohistochemical (IHC) staining for synaptophysin (stains tumor) and Ki-67, with whole 
slide image (WSI) analysis. The Ki-67 index for 50 human GI-NET WSIs were estimated by SKIE 
and compared with three pathologists’ assessment, and the gold standard (exhaustive counting by a 
fourth pathologist) based on the double-stained image. All four pathologists unanimously graded 38 
WSIs, among which, SKIE achieved 94.74% accuracy. One discrepant case was attributed to staining 
inconsistencies and the other to SKIE selecting a better hot-spot. The remaining 12 WSIs had 
discrepant grades among pathologists, and hence, the gold standard was chosen for comparison, 
wherein, 10 WSI grades matched with that of the gold standard, and SKIE assigned a lower and higher 
grade to two cases. Overall, SKIE agreed with the gold standard with a substantial linear weighted 
Cohen’s kappa κ = 0.622 with CI [0.286, 0.958]. We further expanded our method to deep-SKIE, 
wherein, a deep convolutional neural network (DCNN) was trained and validated using 13,736 
hotspot-sized tiles from 40 WSIs, each categorized into one of four classes (background, non-tumor, 
tumor grade 1, tumor grade 2) by SKIE and tested on 9 WSIs. Deep-SKIE achieved an accuracy of 
91.63% with near-perfect agreement (κ = 0.88 with CI [0.87, 0.89]) with the gold standard. 
 
Keywords: Whole slide image analysis, gastrointestinal neuroendocrine tumor (GI-NETs), SKIE, 
deep-SKIE, tumor grading 
 

1. INTRODUCTION 
Gastrointestinal neuroendocrine tumor (GI-NET) grading involves the manual screening for hot-
spots1, 2 (region with highest density of Ki-67 positive cells), and the subsequent enumeration of cells 
within the hot-spot, to obtain the Ki-67 index, i.e. the percentage of Ki-67 positive tumor cells within 
the selected hot-spot. This index is used to categorize the tissue into various grades of tumor: G1, G2 
or G3, based on the WHO classification criteria 20101 (0 > Ki-67 index > 3%: G1; 3 > Ki-67 index 
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>25%: G2; Ki-67 index >25%: G3). This technique is subjective, cumbersome and error prone3, 4. 
Additionally, the difficulty in distinguishing non-tumor cells from tumor cells results in the false 
elevation of the tumor grades5. Furthermore, the most widely used immunostain quantification tool, 
ImmunoRatio6, requires the manual detection of hot-spots and there exists no provision to distinguish 
the tumor from non-tumor cells. 

To address the above limitations, we have developed an integrated approach (tested on 50 whole 
slide images (WSIs) of GI-NET biopsies), termed SKIE (synaptophysin-Ki-67 index estimator), to 
accurately assess the Ki-67 index using WSIs of synaptophysin/Ki67 double immunostains.  Our work 
automates the clinical procedure of hot-spot detection and Ki-67 estimation, while being faster (~ 600 
times) and more accurate, thereby improving clinical workflow. Additionally, SK (where 
synaptophysin stains the tumor regions) ensures the accurate estimation of Ki-67 index as it eliminates 
the accidental inclusion of non-tumor cells.  We further expanded our pipeline to deep-SKIE, by the 
incorporation of a deep convolutional neural network (DCNN) (Inception V37), to automatically 
predict the tumor grade and generate a heat-map displaying the tumor distribution across the WSI. 

 

2. METHODOLOGY 
2.1 Data acquisition 

Fig 1. Synaptophyin-Ki-67 Index Estimator (SKIE) computational pipeline. GI-NET tissue section stained with 
(A) hematoxylin and eosin, and (B) synaptophysin (red) and Ki-67 (brown). (C) Result of landmark-based image 
registration. (D-E) Binary mask of synaptophysin positive region and Ki-67 positive cells, respectively, obtained via 
color deconvolution. (F-G) Automated detection of five candidate hot-spots. (H-I) Extracted hot-spot from 2A and 
2B. (J) Overlay of nuclei mask obtained via unsupervised classification of pixels via k-means clustering of 2H to 
obtain all cells within tumor regions. (K) Overlay of the hot-spot using masks from 2D and 2E to obtain Ki-67 
positive cells (green) within tumor regions (blue). 
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This study was approved by the Institutional Review Board at the University of California Davis 
Medical Center. Case selection, tissue section preparation and staining were previously detailed5. The 
50 GI-NET cases used for analysis were derived from stomach (n=8), small bowel (n=13), appendix 
(n=5), colon (n=3), rectum (n=16), and pancreas (n=5). One double-stained, one Ki-67-only and one 
H&E-stained adjacent sections were generated for each case.  The slides were scanned with Aperio 
AT2 scanner at 20X magnification.  
2.2 Quantification of Ki-67 index by pathologists 
 Details on the participating pathologist’s quantification of the Ki-67 index were previously 

described5. Each pathologist subjectively selected a hot spot and enumerated the Ki-67 positive and 
negative tumor cells until at least 500 total tumor cells were counted. As gold standard, a fourth 
pathologist measured the Ki-67 index by exhaustive counting (i.e. manually ticking off each Ki-67-
positive and negative tumor cell).  
2.3 SKIE–computational pipeline 
Fig. 1 shows the computational pipeline for SKIE.  Manually selected landmark points chosen within 
H&E and double-immunostained WSI by the user is used for landmark-based image registration9 (Fig. 
1A-C). The binary masks of the tumor region and the Ki-67-positive nuclei (Fig. 1D-E) were obtained 
via color deconvolution10. Five high-density Ki-67 positive locations (500 x 500 µm) were 
automatically selected (Fig. 1F) from the tumor region (using a 2D histogram of the Ki-67 positive 
cells) as candidate hot spots (Fig. 1G). The Ki-67 negative tumor nuclei stained with hematoxylin in 
the double-immunostained images appeared to be obscured in certain locations due to low contrast 

Fig 2. Deep-SKIE computational pipeline. SKIE classifies hot-spot-sized tile into class 0 (>70% background (B* in 
step 2)), class 1 (<20% synaptophysin), class 2 (G1) or class 3 (G2). The extracted tiles and labels are used to train, 
validate and test the Inception V3 network. The test set predictions are displayed as a heat-map highlighting the tumor 
distribution across the WSI. 
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against Permanent Red (synaptophysin).  To avoid inconsistencies in the detection of Ki-67 negative 
tumor nuclei due to this poor contrast, the enumeration was performed on the registered H&E-stained 
section.  Thus, the binary mask of the tumor region was applied to the H&E-stained counterpart of the 
candidate hot spot (Fig. 1H-I). The non-proliferating tumor cells were detected via unsupervised 
classification of pixels using k-means clustering algorithm (with k = 3, representing hematoxylin, eosin 
and the background).  The cluster representing hematoxylin was chosen to obtain the mask for all 
nuclei (red contours in Fig. 1J) within the tumor region.  The overlap of the tumor region and Ki-67 
positive nuclei (Fig. 1D-E) were extracted to obtain the Ki-67 index (Fig. 1K). 
2.4 Deep-SKIE computational pipeline 
Fig. 2 shows the deep-SKIE pipeline. A sliding window is used to extract all hot-spot-sized tiles from 
the WSI, which are then classified by SKIE into background (class 0) or non-tumor (class 1), if the 
tile has > 70% background pixels, and < 20% synaptophysin stain, respectively. The remaining tiles 
are processed to compute their Ki-67 index, which are used to categorize them into class 2 (G1) and 3 
(G2). 80% of WSIs (40 WSIs), i.e. 13,736 (250 x 250) image tiles were used to train and validate a 
deep convolutional neural network (DCNN) (Inception V3), and ~20% of WSIs (9 WSIs, 1 WSI with 
staining inconsistencies was removed) were used to test the model. 
 

3. RESULTS 
3.1 SKIE-based tumor 
grade and Ki-67 index 
performance evaluation 
 SKIE had a substantial 
agreement with the gold standard 
with a linear weighted Cohen’s 
kappa8 κ = 0.62 with 95% 
confidence interval (CI) [0.29, 
0.96], with an accuracy of 92% 
and an index error of 
0.80 ± 0.96% (absolute 
difference between the gold 
standard and SKIE index).  The 
three pathologists and the gold 
standard unanimously agreed 
upon tumor grades for 38 of the 
50 cases; 94.74% of these cases 
were accurately classified by 
SKIE.  One discrepant case was 
attributed to staining artifacts, 
and the other to SKIE selecting a 
hot-spot of higher index.  For the 
remaining 12 WSIs with varying 
grades assigned by different 
pathologists, the gold standard 

 
Fig 3. Residual error comparison between SKIE and ImmunoRatio. (A) 
The residual error for the average of five candidate hot-spots picked by SKIE 
versus (B) ImmunoRatio on the same fields as compared to the gold standard 
of exhaustive manual counting of the pathologist selected hot-spot. (C) The 
residual error of the maximum hot-spot picked by SKIE versus (D) 
ImmunoRatio on the same field as compared to the gold standard of 
exhaustive manual counting of the pathologist selected hot-spot 
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was chosen for comparison, wherein, 10/12 WSIs 
matched with the gold standard and one discrepant 
case was assigned a lower grade (SKIE detected a 
higher number of Ki-67 negative cells than the 
pathologist) and the other, a higher grade than gold 
standard . SKIE roughly needed 1.4 ± 0.47 seconds to 
compute the index from a single hot-spot, while the 
gold standard pathologist needed approximately 15 
minutes. 
3.2 Comparison with ImmunoRatio 

 With the five-candidate hot-spots, two different 
metrics were selected: 1) the maximum and 2) 
average of these five candidates. The same hot-spots 
from adjacent sections stained with Ki-67 only were 
processed with ImmunoRatio. SKIE outperformed 
ImmunoRatio by approximately three-fold, with the 
average of the five-candidate hot-spots as detected by 
SKIE being the closest to the gold standard (Fig. 3). 
The residual error plot of the three pathologists, 

SKIE, and ImmunoRatio in 
comparison to the gold standard is 
shown in Fig. 4. SKIE generated 
comparable results with that of 
the pathologists’, while being 
more reproducible, faster, and 
having a lower index error.  

3.3 Deep-SKIE 
performance evaluation 

Deep-SKIE yielded a training and 
validation accuracy of 99.75% and 96.27%, respectively (Fig. 5), on 13,736 image patches from 40 
WSIs and a testing accuracy of 91.63% on 7922 image patches from 9 WSIs. Deep-SKIE had a near 
perfect agreement (κ = 0.88 with CI [0.87, 0.89]) with the gold standard. 

 

4. DISCUSSION 
The accurate assessment of the Ki-67 index is crucial for tumor grading of GI-NETs, which determines 
the patient’s prognosis and outcome.  In this study, we developed an integrated approach (SKIE) to 
compute the  Ki-67 index by combining a double-immunostain technique with an automated 
computational pipeline. This powerful approach allows for both automated hot spot selection and  the 
Ki-67 index quantification. Furthermore, the hot-spots generated by SKIE, when re-analyzed by the 
pathologist lead to the revision of grades in three cases, highlighting SKIE’s superior hot-spot selection 
capability and ability to improve clinical workflow. Additionally, we have expanded our pipeline to 

Fig 4. Ki-67 index residual error for participating 
pathologists, SKIE, and ImmunoRatio compared 
to exhaustive manual counting. Boxplots show the 
error rate of SKIE compared to three pathologists 
(P1, P2, and P3) and that of ImmunoRatio as 
compared to the gold standard of exhaustive manual 
counting. 

Fig 5. Training and validation of deep-SKIE. (A) Training and validation 
(A) loss and (B) accuracy over 30 epochs.  
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deep-SKIE by incorporating a DCNN to automatically predict the tumor grade and generate a heat-
map displaying the tumor distribution across the WSI. The proposed framework will aid in not only 
faster and more reproducible generation of the  Ki-67 index, but will also be helpful in understanding 
the development of GI-NETs. 
 

5. CONCLUSION AND FUTURE WORK 
This study shows that SKIE has a better hot-spot selection and diagnostic capability of GI-NETs than 
standard  the Ki-67 index based automation. Moreover, deep-SKIE enables the automation of tumor 
grading using double immunostained GI-NET tissue images. The proposed pipeline is faster, robust 
and more accurate than existing automated and manual methods. Future work will aim at studying the 
DCNN filters to better understand the features used by the network to predict tumor grades. 
Additionally, the concept of virtual staining will be further explored, i.e. the use of deep learning to 
virtually stain the tumor regions from H&E-stained tissue images. This exploration would not only 
eliminate the need for additional stains, but also aid in the development of novel digital biomarkers 
for GI-NET diagnosis and help better understand the disease progression. 
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