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Abstract 
In diabetic kidney disease (DKD), podocyte depletion, and the subsequent migration of parietal 
epithelial cells (PECs) to the tuft, is a precursor to progressive glomerular damage, but the limitations 
of brightfield microscopy currently preclude direct pathological quantitation of these cells. Here we 
present an automated approach to podocyte and PEC detection developed using kidney sections from 
mouse model emulating DKD, stained first for Wilms’ Tumor 1 (WT1) (podocyte and PEC marker) 
by immunofluorescence, then post-stained with periodic acid-Schiff (PAS). A generative adversarial 
network (GAN)-based pipeline was used to translate these PAS-stained sections into WT1-labeled IF 
images, enabling in silico label-free podocyte and PEC identification in brightfield images. Our 
method detected WT1-positive cells with high sensitivity/specificity (0.87/0.92). Additionally, our 
algorithm performed with a higher Cohen’s kappa (0.85) than the average manual identification by 
three renal pathologists (0.78). We propose that this pipeline will enable accurate detection of WT1-
positive cells in research applications. 
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I. INTRODUCTION 
Podocytes play a key role in maintaining the function of the glomerulus1. Podocyte loss has been 
associated with progressive glomerular damage2 in diabetic kidney disease (DKD)3, during which, 
parietal epithelial cells (PECs) migrate to the tuft, as a coping mechanism4. Therefore, the 
quantification of podocytes and PECs are of high clinical significance. Due to visual similarities to 
other glomerular cells, there are no automated methods to directly quantify podocytes from brightfield 

Medical Imaging 2021: Digital Pathology, edited by John E. Tomaszewski,
Aaron D. Ward, Proc. of SPIE Vol. 11603, 116030F · © 2021 SPIE

CCC code: 1605-7422/21/$21 · doi: 10.1117/12.2581387

Proc. of SPIE Vol. 11603  116030F-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



images of renal tissue sections. We employed a generative adversarial network (GAN)-based pipeline 
to translate Periodic acid-Schiff (PAS)-stained renal tissue sections obtained from a mouse model of 
streptozotocin (STZ) – induced DKD into Wilms’ Tumor 1 (WT1)-labeled immunofluorescence (IF) 
images, enabling in silico label-free podocyte and PEC identification in brightfield images. Our 
method detected WT1-positive cells with high sensitivity/specificity (0.87/0.92). Additionally, our 
algorithm performed with a higher Cohen’s kappa (0.85) than the average manual identification by 
three renal pathologists (0.78). This pipeline may enable accurate WT1-positive cell detection in 
research applications. 
 
 

II. RESULTS 
Data generation: Out of 14 mice, 7 
were control and 7 were treated 
with STZ, the latter of which was 
categorized as mild (200-400 
mg/dL) or moderate (>400 mg/dL) 
diabetes mellitus (DM), based on 
their fasting blood glucose in the 
four weeks before euthanasia. 
Twenty-four tissue sections were 
stained for WT1 (podocyte and 
PEC marker) and DAPI, and native 
IF images captured. These sections 
were post-stained with PAS 
counterstained with hematoxylin.  
Pix2pix network training and 
predictions. To train a pix2pix 
conditional GAN5, the training 
images need to be aligned. Therefore, image registration6 was used to align the PAS and native IF 
whole slide images (WSIs). Subsequently, the glomeruli from all 24 WSIs (PAS and the registered 
native IF) were extracted as image patches, using our previously published human-AI-loop (H-AI-L) 
algorithm7, and fed to the pix2pix GAN. The model was trained via leave-one-out validation, wherein 
all the glomerulus patches from one mouse were treated as hold-out cases and trained on the rest, with 
each of the 14 mice treated as a hold-out case in sequence. Figure 1 shows in silico IF images generated 
by the network from hold-out glomeruli.  

Segmentation and comparison of WT1-positive cells with native IF derived ground truth: To analyze 
the performance of the network, the WT1-positive cells from the in silico and the native IF image 
were segmented into respective masks via morphological processing8. We then compared the 
segmentation results to hand-segmented masks of WT1-positive cells from 10 randomly chosen 
glomeruli from each of the 24 PAS WSIs. The hand-segmented masks from PAS WSIs were obtained 
using the native IF image derived WT1-positive cell masks as references. The comparison of the in 
silico segmented cells with ground truth displayed a sensitivity/specificity of 0.87/1.0 for n = 240 
glomerulus image patches. 

Figure 1. Pix2pix network predictions. (a-b) PAS-stained image patches 
containing glomeruli, c-d) Native IF-stained image patches containing the 
same glomeruli as in Figure 1a-b, e-f) In silico IF images for these 
glomeruli, g-h) Overlay of WT1-positive cells from native and in silico IF 
images. The yellow, pure green, and pure red nuclei indicate true positive, 
false positive, and false negative WT1-positive cells, respectively. 
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Performance evaluation in 
control, mild, and moderate 
DM: The WT1-positive cell 
masks extracted from the in 
silico IF images were 
converted into .xml format in 
Aperio ImageScope (Aperio 
Technologies, Vista, CA), a 
widely used WSI-viewing 
software. The network 
displayed median hit-or-miss 
sensitivity/ specificity values 
of 0.87/0.92, 0.86/0.92, and 
0.85/0.94, for control, mild, 
and moderate DM cases, 
respectively (Figure 2).  
Quantitative analysis: The 
enumeration of WT1-positive 
cells from the native and in 

silico IF images showed no significant differences (Pearson’s correlation coefficient, r = 0.83, with a 
95% confidence interval (CI) of [0.81, 0.84]; p < 0.05).  
Comparison with manual detection of 
WT1-positive cells: We had three 
renal pathologists (annotators A1, 
A2, and A3) manually annotate both 
podocytes and PECs (in order to 
maintain consistency between the 
automated and manual analysis) from 
72 randomly chosen PAS image 
patches. Annotators A1, A2, and A3 
displayed strong correlations with the 
ground truth (native WT1 IF): for A1, 
r = 0.77 with a 95% CI [0.65, 0.85], p 
< 0.05; for A2, r = 0.73 with a 95% 
CI [0.61, 0.83], p < 0.05; and for A3, 
r = 0.76 with a 95% CI [0.65, 0.85], p 
< 0.05, whereas, the algorithm 
displayed a stronger association with 
the ground truth (r = 0.89 with a 95% 
CI [0.83, 0.93], p < 0.05). In order to 
quantify the agreement between the 
ground truth and the estimated cell 
counts, we used a Bland-Altman plot9 
(Figure 3). These results indicate that 

Figure 3. Bland-Altman plots depicting the comparison of detected 
podocytes. The Bland-Altman plots display the agreement between the 
ground truth and estimated WT1-positive cell counts by pix2pix, and 
annotators A1, A2, and A3. a) The residual error and 95% limits of 
agreement between the ground truth and pix2pix, calculated using the 
mean (µ) and 1.96 times the standard deviation (σ) of the mean difference 
between the two measures. b-d) Same as 4a, for annotators A1, A2, and 
A3, respectively.  

Figure 2. Performance of the pix2pix network in control, mild, and moderate 
DM. The network predictions of WT1-positive cells (outlined in green) are 
shown, on control (left), mild (middle), and moderate (right) DM WSIs, along 
with the median performance metrics (sensitivity, specificity, and accuracy). 
Error bar signifies one standard deviation along the respective performance 
metric. 
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the pix2pix-estimated WT1-positive cell counts are the closest to the ground truth. Overall, all three 
annotators identified WT1-positive cells with a sensitivity/specificity of (A1) 0.77/0.95, (A2) 
0.77/0.94, and (A3) 0.75/0.95, compared to pix2pix (0.92/0.93). Overall, visual screening 
demonstrated that the major difference in the sensitivity is due to podocytes deep within the 
glomerulus (“central podocytes”), rather than at the periphery of the glomerular tuft (“peripheral 
podocytes”). We then calculated the linear weighted Cohen’s kappa (κ)10 values for the annotators 
and the algorithm, for three classes of nuclei within the glomerulus: 1) peripheral podocytes and PECs, 
2) central podocytes, and 3) non-podocyte cells. Annotators A1, A2, and A3 displayed substantial 
agreement, with κ = 0.79 with a 95% CI [0.77,0.82]), κ = 0.77 with a 95% CI [0.74,0.80]), and κ = 
0.77 with a 95% CI [0.74,0.80]), respectively, whereas, pix2pix displayed a near-perfect agreement, 
with κ = 0.85 with a 95% CI [0.83,0.88]).  
 
 

III. METHODS 
Mouse Model: We used a standard streptozotocin (STZ) treated mouse model11, as detailed in our 
earlier publication12. All animal studies were performed in accordance with protocols approved by the 
Institutional Animal Care and Use Committee at University at Buffalo. They were also consistent with 
federal guidelines and regulations, and followed the recommendations of the American Veterinary 
Medical Association guidelines on euthanasia. Renal tissue sections from 7 control and 7 STZ-treated 
mice were used (categorized as mild (200-400 mg/dL) or moderate DM (> 400 mg/dL)), which were 
formalin fixed and paraffin embedded (FFPE). 
Tissue staining and imaging protocol: The FFPE sections were deparaffinized with an automated 
instrument, Discovery Ultra (Ventanta Medical Systems, Inc., Tucson, AZ). Subsequently, antigen 
retrieval was performed using an EDTA-based buffer. The tissue sections were spotted with DAPI 
mounting media (Vectashield Antifade Mounting Medium with DAPI, ex/em (nm): 358/461; Vector 
Laboratories, Inc., Burlingame, CA). The podocytes and PECs were labeled using WT1 (ab89901, 
Abcam, Cambridge, UK) as a primary antibody with Alexa Fluor 594 (ex/em (nm): 590/617) goat 
anti-rabbit IgG (1:1000, Life Technologies, Carlsbad, CA) as the secondary antibody. The slides were 
imaged for fluorescence at 40X magnification (0.13 µm/pixel) using an Aperio VERSA digital whole 
slide scanner (Leica Biosystems, Buffalo Grove, IL). Following fluorescence imaging, the slides were 
prepared for post-staining via PAS. Slides were soaked in xylene for about an hour, until the edge of 
the coverslip could gently be lifted with a knife. Once the coverslip was removed, the tissues were 
rehydrated. Rehydration consisted of 2x 10 min washes in xylene, followed by 2x 10 min washes in 
100% ethanol, before stepping down with 2x 5 min washes in 70% ethanol, and then submerging the 
slides in ddH2O. A PAS Stain Kit (ab150680, Abcam, Cambridge, UK) was used to post stain the 
tissues. The slides were again imaged in brightfield mode at 40X magnification with the Aperio 
VERSA system.  
Schematic overview: The PAS-stained WSI was fed to our H-AI-L pipeline7 to extract the glomerulus 
locations (Figure 4a-b). Next, the PAS-stained WSI was aligned with the corresponding IF-stained 
WSI via image registration6 (Figure 4c-d). Subsequently, 256 × 256 image patches containing 
glomeruli were extracted from the PAS and the corresponding IF WSI (Figure 4e-f) to train and test 
the pix2pix conditional GAN5. Once trained, extracted glomeruli image patches from the hold-out 
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mouse were fed to the network, which were then translated into in silico IF image patches (Figure 4g-
j), which then underwent morphological processing8 to extract WT1-positive cell boundaries, which 
were displayed along with input PAS WSIs (Figure 4k).  

Image 
registration 

and 
glomeruli 
detection: 

The four 
corners of the 
bounding box 

containing 
the tissues 
(PAS and IF), 
and their 

centroids, 
were used as 

landmark 
points for 
registration6. 

Manual offset 
values were 
added, if 
necessary, to 
obtain perfect 

registration. 
To detect glomeruli in PAS-stained WSIs, all glomeruli were manually annotated in three randomly 
chosen PAS WSIs, and were used to train the H-AI-L algorithm7, a convolutional neural network 
(CNN) trained to automatically segment glomeruli from brightfield WSIs of renal tissue sections. 
Pix2pix GAN training and validation: The model was trained via leave-one-out validation, wherein 
all the glomerular image patches from one mouse were treated as hold-out cases and trained on the 
rest, with each of the 14 mice treated as a hold-out case in sequence. The training set for the pix2pix 
GAN architecture5 consisted of ~1.4K paired image patches (PAS and IF), augmented into ~11K 
images by standard image augmentation techniques like flipping and rotation. Our model was trained 
for 20 epochs on an NVIDIA GeForce GTX GPU, based on the PyTorch implementation and 
hyperparameters specified by Isola et al5.  
WT1-positive cell segmentation and comparison with hand-segmented ground truth: In order to 
extract the WT1-positive cells from IF images, color deconvolution13, morphological processing, and 
watershed algorithm14 were used8. For image patches with staining artifacts, hand-segmented masks 
of WT1-positive cells were obtained.  
Statistical analysis: To compare the performances of the pix2pix network and the expert annotators 
to the ground truth, linear-weighted Cohen’s kappa10 was calculated. Kappa < 0, 0-0.21, 0.21-0.4, 
0.41-0.6, 0.61-0.8, and 0.81-1 indicated none, slight, fair, moderate, substantial, and near perfect 

Figure 4. Schematic overview of the pipeline. a) Whole-slide image (WSI) of periodic acid-Schiff 
(PAS)- stained renal tissue section. b) Glomeruli detection by H-AI-L algorithm. c) WSI of the same 
section stained with IF markers. d) Result of image registration. e-f) Extraction of glomeruli image 
patches (from PAS and registered IF WSI), which were used to train the pix2pix network. g) Hold-
out PAS WSI. h) Glomeruli detection by H-AI-L algorithm. i) Extraction of glomeruli patches, 
which were fed to the trained network for prediction. j) In silico IF image. k) WT1-positive cell 
boundaries displayed along Figure 4g. 
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agreement, respectively. Additionally, Pearson’s correlation coefficient was used to compute the 
association between the counts extracted from the in silico IF images (and the expert annotators) and 
the ground truth. To quantify the agreement between the ground truth and estimated WT1-positive 
cell counts, the Bland-Altman9 plot was utilized.  
 
 

IV. DISCUSSION 
The automated detection of podocytes and PECs in brightfield images of renal tissue sections could 
enable not only rapid quantification of these cells, but also would aid in tracking disease progression. 
Our pipeline is a reproducible and accurate method for automated detection of WT1-positive cells in 
brightfield WSIs of renal tissue sections.  
 
 

V. CONCLUSION AND FUTURE WORK 
Our proposed framework based on careful generation of multi-modal microscopy image data and 
pix2pix conditional GAN, can be used as a generalized framework to detect important cellular 
compartments from digital histology images. This framework can be extended to other applications in 
digital pathology. 
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