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ABSTRACT 
Podocyte injury plays a crucial role in the progression of diabetic kidney disease (DKD). Injured 
podocytes demonstrate variations in nuclear shape and chromatin distribution. These 
morphometric changes have not yet been quantified in podocytes. Furthermore, the molecular 
mechanisms underlying these variations are poorly understood.  Recent advances in omics have 
shed new lights into the biological mechanisms behind podocyte injury. However, there currently 
exists no study analyzing the biological mechanisms underlying podocyte morphometric variations 
during DKD. First, to study the importance of nuclear morphometrics, we performed 
morphometric quantification of podocyte nuclei from whole slide images of renal tissue sections 
obtained from murine models of DKD. Our results indicated that podocyte nuclear textural features 
demonstrate statistically significant difference in diabetic podocytes when compared to control. 
Additionally, the morphometric features demonstrated the existence of multiple subpopulations of 
podocytes suggesting a potential cause for their varying response to injury. Second, to study the 
underlying pathophysiology, we employed single cell RNA sequencing data from the murine 
models. Our results again indicated five subpopulations of podocytes in control and diabetic mouse 
models, validating the morphometrics-based results. Additionally, gene set enrichment analysis 
revealed epithelial to mesenchymal transition and apoptotic pathways in a subgroup of podocytes 
exclusive to diabetic mice, suggesting the molecular mechanism behind injury. Lastly, our results 
highlighted two distinct lineages of podocytes in control and diabetic cases suggesting a 
phenotypical change in podocytes during DKD. These results suggest that textural variations in 
podocyte nuclei may be key to understanding the pathophysiology behind podocyte injury. 
 

 
I. INTRODUCTION  

Diabetic kidney disease (DKD) is the most common cause of kidney failure in the United States1. 
Podocyte injury and subsequent loss are hallmark phenomenon associated with DKD2. Following 
injury, podocytes demonstrate variations in nuclear shape and chromatin distribution3. Although 
such textural variations in cancerous cells4 are often quantified in digital pathology via nuclear 
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texture analysis, these changes have not yet been quantified in podocytes. Furthermore, the 
molecular mechanisms underlying these variations in podocytes are poorly understood.  
 
Recent advances in omics have enabled the screening of a vast array of genes and proteins, which 
has shed new lights into understanding the biological mechanisms behind cell injury5,6. However, 
there currently exists no study analyzing the biological mechanisms underlying podocyte 
morphometric variations during DKD. Thus, the aim of this study was to evaluate the diagnostic 
value of podocyte nuclear morphometrics and textural features during DKD and to simultaneously 
study the underlying pathophysiology behind these variations.    
  

II. RESULTS  
To analyze podocyte morphometrics and texture, first, we performed nuclear texture analysis of 
podocytes from whole slide images (WSIs) of renal tissue sections obtained from control and 
murine models of DKD. Second, to study the molecular level changes in podocytes during DKD, 
we extracted single cell RNA sequencing (scRNA-seq) data from these murine models. Finally, to 
track potential shifts in podocyte phenotype during DKD, we performed a dynamic analysis of the 
scRNA-seq data using Clustering and Lineage Inference in Single-Cell Transcriptional Analysis 
(CALISTA)7, a tool developed to track dynamic changes between distinct subgroups of cells based 
on their gene expression levels. 
 
Image-based results: 
Quantitative analysis confirmed histological changes in diabetic mice: Quantitative analysis 
indicated that the diabetic glomeruli hypertrophied (p < 0.0001) up to 1.25-fold the size observed 
in control mice (Fig. 1). Additionally, a significant depletion in both absolute and relative count 
of podocytes were observed (p < 0.0001) in diabetic mice (Fig. 1).  
Subpopulations were identified based on podocyte nuclear texture and morphometrics: The 
podocyte nuclear morphometrics and textural features demonstrated the presence of five 
subclusters of podocytes. These results suggested the heterogenous nature of podocytes which may 
potentially explain their varying response to injury. 
Nuclear texture demonstrated a statistically significant difference in diabetic podocytes compared 
to control: The nuclear texture, quantified using the histogram of gradients (HoG) feature 
descriptor, a feature vector commonly used in computer vision to track localized textural 
variations, demonstrated a statistically significant (p < 0.05) difference in diabetic podocyte nuclei 
compared to control, suggesting that podocyte nuclear texture may be key to understanding the 
pathophysiology behind podocyte injury during DKD.  
 
ScRNA-seq-based results: 

Podocytes were identified based on cell-specific markers: ScRNA-seq data analysis revealed 
nineteen different cell types in the mouse kidney, from which podocytes were identified using cell-
specific markers (Nphs1, Nphs2, and Tcf21).  
Gene expressions also revealed five subpopulations of podocytes: The unsupervised clustering of 
the detected podocytes from both control and diseased cases indicated the presence of five 
subclusters of podocytes.  Among the five detected clusters, two clusters demonstrated a clear 
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separation (cluster 0 vs cluster 2 in Fig. 2A) between control and disease cases. The differentially 
expressed genes between subcluster 0 and 2 indicated that the latter demonstrated elevated levels 
of Rasl11a (a small GTPase protein with a high similarity to Ras), suggesting the involvement of 
Ras pathway effectors, and Tspan2 (a tetraspanin protein), which is associated with glucotoxicity 
and apoptosis in pancreatic beta cells in type 2 diabetes.  

 
 
Gene set enrichment analysis (GSEA) showed enrichment of epithelial mesenchymal transition 
(EMT) and apoptosis related genes in diabetic podocytes: GSEA was used to evaluate the gene 
expression data in podocytes. The results revealed EMT (p < 0.05) and apoptotic (p < 0.05) 
pathways in diabetic podocytes. These results highlight the varying biological mechanisms 
underlying podocyte injury. 
 
Inference based on podocyte-specific changes in image-domain and scRNA-seq domain: 

Podocytes nuclear morphometrics and textural data may provide insights into activation of EMT 
and apoptotic pathways during podocyte injury: The aforementioned image-based morphometric 
analysis revealed that podocyte nuclear texture was a key feature distinguishing diabetic from 
control podocytes. In tandem, the scRNA-seq highlighted EMT pathway (which is accompanied 
by dynamic changes in DNA methylation) and apoptotic pathway (which is accompanied by DNA 
fragmentation). These results suggest that podocyte nuclear morphometrics and textural features 
extracted from the WSIs may potentially aid in the identification of EMT or apoptosis-activated 
podocytes reflective of podocyte injury during DKD. 
  

 

Fig. 1. Histological changes in diabetic mice. Quantitative analysis of renal tissue sections revealed statistically 
significant glomerular hypertrophy (p < 0.0001) as well as relative (p < 0.0001) and absolute (p < 0.0001) depletion 
of podocytes in diabetic mice.   
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Dynamic analysis of podocyte-specific variations: 
CALISTA-based analysis of the scRNA-seq data revealed two independent lineages in control and 
diabetic podocytes: Among the distinct subpopulations of podocytes identified in control and 
diabetic cases, the adjacent clusters were processed by CALISTA for dynamic analysis. The results 
demonstrated a dynamically distinct change in gene expressions in different podocyte subclusters, 
in both control and diabetic cases, indicating a phenotypical change in podocytes during DKD. As 
our next step, we will perform a similar study in the image-domain to track the gradual change in 
podocyte morphometrics with respect to disease severity. 
 

 
III. METHODS  

From the mouse models, images of renal tissue sections were utilized to extract podocyte nuclear 
morphometrics. These sections were stained using periodic acid Schiff (PAS) counterstained with 
hematoxylin. To establish the ground truth for the hematoxylin-stained podocytes in the PAS 
WSIs, the same section was also stained using IHC markers labeling podocyte nuclei. To study 
the underlying pathophysiology, scRNA-seq data was extracted from the same mouse models.  
 
Data acquisition: 

 

Fig. 2. Identified subclusters within podocytes and their dynamic analysis using CALISTA. (A) Re-
clustering of previously identified podocyte subclusters, and (B) their respective disease status. The clusters 
separated by disease state ((C) control and (D) diabetic cases). The arrows indicate the direction of dynamic 
changes in individual subclusters, highlighting a phenotypical change in diabetic podocytes.   
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Image data: Six formalin-fixed paraffin-embedded (FFPE) tissue sections of 2 µm thickness were 
obtained from wildtype control (n = 3) and db/db diabetic (n = 3) mouse kidneys and processed 
for staining. Each section was first stained using IHC markers labeling podocyte nuclei and imaged 
using Brightfield 40x oil on Leica Aperio VERSA 200 Whole Slide Scanner (Leica Biosystems 
Inc., Buffalo Grove, IL). Next, the IHC markers were bleached, and the sections were post-stained 
using PAS Stain Kit (ab150680, Abcam, Cambridge, UK) and counterstained with hematoxylin. 
The slides were then imaged using the same scanner. For labeling podocytes, p57 antibody was 
used as the primary and rabbit specific HRP/AEC chromogen (ab64260) (Abcam, Cambridge, UK) 
was used as the secondary antibody.  
ScRNA-seq data: The 10x Genomics Chromium platform was used for extracting scRNA-seq data 
from the mouse kidneys. A total of 26,495 control cells (using aggregated cells from 3 mice) were 
sequenced to a depth of 15,218 reads per cell and 794 median genes per cell. A total of 63,209 
diabetic mouse cells (using cells separately from 3 mice) were sequenced to a depth of 22,317 
reads per cell and 512 median genes per cell. The output from 10X Genomics Cellranger version 
3.0.1 pipeline was used as input into the R analysis package Seurat version 3.1.1. For quality 
control, the number of genes detected in a cell (between 200 and 5000) and their mitochondrial 

transcript load (>30%) were used to filter damaged or unwanted cells from analysis. 
 
Image processing: 

Podocyte nuclei detection and segmentation: To identify podocytes from the PAS WSIs, first, 
these WSIs were aligned with the corresponding IHC WSIs using a simple translation-based image 
registration. Next, prior to podocyte detection, we needed to identify glomerular locations within 
the WSIs. Thus, we utilized our previously published H-AI-L pipeline8,9, a computational tool 

 

Fig. 3. Schematic pipeline for podocyte nuclei extraction in murine PAS-stained WSIs. The PAS and 
corresponding IHC-stained WSIs were first aligned using image registration. Next, the locations of glomeruli 
were identified using our H-AI-L pipeline. Once the glomeruli locations were identified, image patches containing 
glomeruli were extracted from the corresponding WSIs. Subsequently, the IHC-stained glomerular image patches 
were used as ground truth to identify and locate podocyte nuclei from the corresponding PAS images. Finally, the 
detected nuclei were extracted via morphological processing for subsequent morphometric quantification.   
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designed to automatically detect glomeruli using a convolutional neural network (CNN). Once 
identified, image patches containing glomeruli were extracted from both WSIs. Subsequently, the 
p57-positive nuclei from the IHC glomerular image patches were used to identify podocyte nuclei 
in the PAS images, which were then extracted for morphometric quantification (Fig. 3). 
Feature extraction: Several histological changes have been associated with DKD such as 
glomerular hypertrophy10. This increase in glomerular size leads to a relative depletion in podocyte 
densities, which progressively worsens with increasing disease severity10. Additionally, diseased 
glomeruli display mesangial expansion11, a hallmark feature indicated by an increase in PAS-
positive regions in the glomerulus. Apart from these glomerulus-level changes, individual 
podocytes undergo morphometric changes12. These changes are often accompanied by variations 
in chromatin distributions within the nuclei. To quantify these biological characteristics of 
podocyte nuclei along with the DKD-associated changes in the glomeruli, three distinct types of 
features were extracted from the detected podocyte nuclei: 1) standard morphological features of 
podocyte nuclei (to quantify their shape and size), 2) textural features of podocyte nuclei generated 
using histogram of gradients (HoG) feature descriptor (to quantify variations in chromatin 
distributions), and 3) local information of individual podocyte nuclei with respect to the 
glomerulus (i.e., proximity to the glomerular center). Furthermore, since the location of individual 
podocytes vary within the glomerulus, each of them may be subject to different levels of 
environmental stress leading to differences in morphological characteristics. Thus, to extract local 
information, the proximity of each podocyte nucleus to glomerular centroid and boundary was 
extracted. Additionally, the glomerular compartmentalization algorithm by Ginley et al. JASN, 
201913 was used to segment the mesangial area within the glomeruli. Subsequently, the percentage 
of mesangial pixels surrounding each podocyte nucleus in a two-pixel radius was quantified. These 
local features may aid in the identification of potential subgroups of podocytes which are more 
prone to injury based on their locations within the glomerulus.  
ScRNA-seq. data analysis: After quality control (as detailed previously), the scRNA-seq data was 
normalized using the SCT normalization14 technique, followed by dimensionality reduction and 
visualization using Principal Component Analysis (PCA) and UMAP (Uniform Manifold 
Approximation and Projection). Finally, a SNN (Shared Nearest Neighbor) graph method was 
utilized for the unsupervised clustering of cells. For GSEA, the R package fgsea was used. The 
input genes were ranked by their log-fold changes from the differential expression analysis and 
the reference gene sets were collected from the Molecular Signatures Database (MSigDB). 
 

IV. CONCLUSION AND FUTURE WORK  
Our results highlight that podocyte nuclear morphometrics and texture may be key to 
understanding the pathophysiology behind podocyte injury. In the future we will employ 
CALISTA to study the dynamic changes in image-based podocyte morphometrics to study 
potential subclusters of podocytes and DKD-induced morphological changes in podocytes. This 
type of study may pave way into more complex studies into analyzing podocyte specific 
morphological changes and their underlying biological mechanisms.  
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