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ABSTRACT

Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method
for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing
fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo
tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs
against a background or “solvent” in FLT imaging microscopy (FLIM) images derived using NIR fluorescent
dyes. We have identified significant multiresolution structures using replica correlations in these images, where
such correlations are manifested by information theoretic overlaps of the independent solutions (“replicas”)
attained using the multiresolution CD method from different starting points. In this paper, our method is found
to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian
distributions. It offers more than 1.25 times diversity based on Shannon index than the latter method, in selecting
clusters with distinct average FLTs in NIR FLIM images.

1. INTRODUCTION

Image segmentation plays a crucial role in many medical imaging applications by enhancing the detection of
anatomical structures of interest. Examples of medical image segmentation methods include graph partitioning
methods and normalized cuts,2–4 and mixture of Gaussian distributions (MGD) method,5 to name a few.

In this work, we apply a multiresolution “community detection” (CD) approach based on graph partitioning
theory1,3 to segment complex intracellular signals derived using fluorescent dyes. CD1,3, 6–10 seeks to divide
groups of nodes with dense connections internally and with sparser connections between the groups. Moreover,
it partitions a large physically interacting system into optimally decoupled communities. To demonstrate our
approach, we have used fluorescence lifetime imaging microscopy (FLIM) data captured using near-infrared
(NIR) fluorescent dyes,11 where the underlying signal describing intra-cellular distribution is complex in nature.
FLIM, a promising technique for imaging molecular process, uses time-resolved measurements of fluorescence
from cells and thin tissue sections to generate images of the characteristic fluorescence lifetimes (FLTs) within
a pixel or voxel. The FLT is the average time a molecule resides in the excited state before returning to the
ground state through fluorescence emission.12

Segmentation of the FLIM data is challenging due to the high amount of spatial and temporal noise attached
to such data. Such a problem is severe for images captured using organic NIR dyes because of their low
photostability, resulting in low-signal-to-noise ratio (SNR) and low-resolution images. Hence, there exists a niche
to efficiently segment such data to mine the spatial structures hidden in them. In this study, we deliberately
used low SNR data to determine the segmentation quality of our CD method. Although we focus on the NIR
FLIM data in this report, the CD method is generally applicable to diverse imaging data.

To perform the segmentation, our multiresolution CD first investigates the optimal structure at different
resolutions in the input image data. It then analyzes each of these resolutions to obtain the respective number
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of estimated communities and the corresponding partition strengths. The partition quality is evaluated via
information correlations between independent solutions (“replicas”) starting from different initial states. This
analysis determines the significant structures at which the replicas are strongly correlated. The outcome of the
multiresolution CD method for the case of FLIM images is a segmented image containing distinct average FLTs
in each of its segments. It is noteworthy that our CD method is “unsupervised” in nature. Namely, it does
not employ any ground-truth as a prior knowledge to train the algorithm. In particular, the algorithm does not
assume any prior knowledge of specific spatial patterns corresponding to any specific community hidden in the
input data.

We have compared the performance of our CD method with another image segmentation method based on
the mixture of Gaussian distributions (MGD)5 for segmenting the NIR FLIM images. Our method proves to be
more than 1.25 times diverse based on Shannon index than the latter method, in finding spatial regions with
distinct average FLTs in the NIR FLIM data. A detailed biological validation of the resulting segments and their
biological roles is beyond the scope of this work, since such validation varies from one biological study to another.
We nevertheless argue that our multiresolution CD method is general for segmenting fluorescence microscopy
images, and it can be used to generate hypotheses for future biological validation.

The study is presented as follows. In Section 2, we discuss briefly on our NIR FLIM system and the structure
of the data acquired from such system. Section 3 presents our multiresolution CD approach for performing
segmentation of images based on their spatial information. Section 4 extends our approach for images described
by both spatial and temporal information. In both of these sections, we also develop image segmentation methods
based on MGD. In Section 5, we present the performance of our method using NIR FLIM image of an ex vivo liver
tissue sample of mice treated with a NIR fluorescent dye. Section 5 describes a comparison of this performance
with that attained using the MGD method. We conclude in Section 6.

2. NEAR-INFRARED FLUORESCENCE LIFETIME IMAGING MICROSCOPY

Before we present our segmentation method in detail, we briefly describe an overview of our NIR FLIM system
and the structure of the acquired data.11 Our NIR FLIM system consists of a fiber-coupled laser diode (BDL-
785-SMC, Becker-Hickl, Germany), a confocal laser scanning fluorescence microscope (FV1000, Olympus, Center
Valley, PA), a thermoelectrically cooled, red-enhanced photomultiplier tube (PMT) (PMC-100-20, Becker-Hickl,
Germany), and a time-correlated single photon counting (TCSPC) card (SPC-730, Becker-Hickl, Germany).
The laser diode operates at TEM00 mode13 and provides 785 nm excitation light. Its pulsed wave duration is
nominally 60-80 ps with frequency of 50 MHz. The PMT offers a minimum photon-count rate of 5 MHz. The
TCSPC card has a transit-time spread of 180 ps and a dead time of 125 ns. The single photon counting operation
employs equally spaced 256 time gates of duration 16.6 ns, with an initial delay of 1.4 ns for eliminating photons
from the excitation pulse in the measurement.

To capture the FLIM images, the laser light was collimated, passed through the confocal system, and focused
onto the sample using a 20X, 0.95-NA objective. Single photon fluorescence from the sample was collected
through the same objective and directed by a dichroic mirror toward the confocal pinhole and detected by the
PMT. Residual excitation light was removed using a bandstop filter with cutoff wavelengths of 765 nm and 805
nm before the PMT. Data acquisition was performed using the TCSPC card, triggered via a synchronization
signal generated by the laser driver for each laser pulse. Images were acquired by unidirectional scanning with
the excitation beam using a galvanometric mirror pair as embedded in the confocal microscope system.

To generate the input data for the segmentation methods used in this study, collected time traces captured
from the NIR FLIM system were first analyzed in the SPCImage software (Becker-Hickl, Germany). It replaces
time traces per pixel with the cumulative time traces computed using the target pixel and its neighboring eight
pixels to increase the SNR. The maximal SNR is typically defined here to be the square root of the number
of photons acquired in the peak channel of the 256 time gates used to perform TCSPC acquisition.14 The
resulting data of size 128×128×256 describe spatio-temporal FLT information of the target field-of-view (FOV)
of the imaging sample of interest. The first two dimensions (of size 128×128) typically describe the spatial
pixel locations in this FOV. The third dimension, of length 256, samples for any of these pixels describe a
temporal convolution between the instrument response function (IRF) and the fluorescent decay trace of that
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particular pixel location. To generate a spatial two-dimensional (2D) dataset for performing the segmentation,
the above-mentioned three-dimensional (3D) data were analyzed further using the SPCImage software. In each
pixel location of the imaging sample, the earliest time points allow fitting of the IRF, while a single-exponential
curve was sufficient to fit the subsequent falloff with time along the third dimension of length 256. A χ2

r fitness
test determined the validity of the fit, providing χ2

r values < 1.5 for all pixels. The resulting data of size 128×128
describe a spatial FLT information of the target FOV of the imaging sample of interest. This report presents
methods for performing spatial segmentation of both 2D and 3D FLIM data described herein.

To conduct specific examples for analyzing performances of the segmentation methods explored in this work,
we imaged ex vivo liver tissue sample of a mouse treated with an NIR fluorescent dye. The NIR FLIM data was
captured using the system and methodology as described above. All animal studies were performed in compliance
with the Washington University School of Medicine Animal Studies Committee requirements for the humane
care and use of laboratory animals in research.

3. SEGMENTATION OF IMAGES DESCRIBED BY 2D SPATIAL
INFORMATION

This section first reviews our multiresolution CD method for spatially segmenting images described by 2D spatial
information. We also briefly review the MGD method for segmenting such images.

3.1 Community Detection Method

We employ the multiresolution CD algorithm to investigate the optimal structure at different resolutions in the
input images. We use the number of estimated communities and the information based measures to determine
the significant structures at which the “replicas” are strongly correlated. (“replicas” are defined as independent
solutions of the multiresolution CD algorithm attained from different starting points.1) We determine different
levels of detail and resolutions by setting the resolution parameters.

The spin σi (∀σi ∈ {1, 2, . . . ,K}) defines the segment identity for the ith (i ∈ {1, 2, . . . , N}) pixel, and thus
defines a segmentation. We minimize a Potts model Hamiltonian for solving the CD problem,10

H =
1

2

K∑
k=1

∑
i6=j

(Wij − W̄ )
[
Θ(W̄ −Wij) + γΘ(Wij − W̄ )

]
δ(σi, σj). (1)

Here the number of communities (segments) K can be specified from the input or left arbitrary, allowing the
algorithm to decide the number of segments K using the lowest energy solutions. The weight Wij denotes the
absolute FLT difference between a pixel pair formed by the ith and jth ({i, j} ∈ {1, 2, . . . , N}) pixels in the input
image with N pixels. The Heavyside functions Θ(·) “turns on” or “off” the edge designation.

Θ(Wij − W̄ ) =

{
1, if Wij > W̄ ,

0, otherwise.
(2)

The Kronecker delta δ(·) is given by Eq. (3),

δ(σi, σj) =

{
1, if σi = σj ,

0, otherwise.
(3)

In this Hamiltonian, by virtue of the δ(σi, σj) term, each spin σi interacts only with other spins in its own
segment. The algorithm optimizes the spins in minimizing the energy defined by Eq. (1). As such, the resulting
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model is local— a feature that enables high accuracy along with rapid convergence.9 As before, minimizing the
Hamiltonian of Eq. (1) corresponds to identifying strongly connected segments of pixels.1

For the 2D NIR FLIM images, we define the weight of any edge formed by two pixels as the absolute difference
between their FLTs. We then apply the multiresolution CD algorithm to segment the network formed using the
image pixels as nodes. We then analyze the number of the respective estimated segments K and the replicas’
information theoretic measures (normalized mutual information IN and variation of information V ) as a function
of the resolution parameter γ. Decreasing γ, the minima of Eq. (1) lead to solutions progressively lower intra-
community edge densities, effectively “zooming out” toward larger structures. We determine all natural network
resolutions by identifying the values of γ for which the replicas exhibit extrema in the average information
theoretic overlaps when expressed as a function of γ.8

3.2 Mixture of Gaussian Distribution Method

The MGD based segmentation method models the data to be a mixture of multivariate Gaussian distributions
of unknown means and covariances.5 For 2D FLIM data, FLTs of all the pixels are assumed to be a mixture of
univariate Gaussian distributions of unknown means and variances, and it is segmented using the expectation
maximization (EM) based optimization method for segmenting mixture of Gaussian distributions developed
originally by Hastie et al.5 We discuss below the MGD method for the general case of mixture of multivariate
Gaussian distributions, assuming that the number of models is known. We then present how we propose using
this method specifically for the 2D data as described in Section 2.

The MGD method models the probability density function (pdf) of the kth (∀ k ∈ {1, 2, . . .K}) component of
the data x (x ∈ Rd) as Eq. (5), where K is the number of models defined by the number of Gaussian distributions
in the mixture, d is the dimension of the data, and µk of size d × 1 and Σk of size d × d are the mean and
covariance of the kth component. Assuming the weight of the kth component as ak, the mixture pdf is given by,
Eq. (4).

f(x) =

K∑
k=1

akfk(x), (4)

where

fk(x) =
1√

(2π)d|Σk|
exp

(
− (x− µk)TΣ−1k (x− µk)

2

)
. (5)

To estimate the segment identity for the observed incomplete data {x1,x2, . . . ,xN}, where N is the sample
size, we define complete data for performing the EM based optimization as {(x1, y1), (x2, y2), . . . , (xN , yN )}.
Here yi (∀ yi ∈ {1, 2, . . . ,K}) is the unknown segment identity of sample xi (∀ i ∈ {1, 2, . . . , N}). The other
unknown parameters θ includes ak, µk, and Σk ( k ∈ {1, 2, . . . ,K}). The maximum likelihood function is given
by Eq. (6),

L({x1,x2, . . . ,xN}|θ) =

N∑
i=1

log

(
K∑
k=1

akfk(xi)

)
. (6)

A classification EM algorithm developed by Hastie et al. maximizes Eq. (6). To segment a 2D NIR FLIM
image, we segment the collection of the FLTs {x1 = τ1, x2 = τ2, . . . , xN = τN} from all the pixels of this image
using the univariate version (d = 1) of the MGD algorithm. For simplicity, we assume K to be known, and
perform the segmentation for increasing number of segments K. The final segmented image is generated using
the K for which each of the resulting segments contains at least a predefined number of pixels, see Section 5.
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4. SEGMENTATION OF IMAGES DESCRIBED BY 3D SPATIO-TEMPORAL
INFORMATION

This section extends the methods developed in Section 3 for spatially segmenting images described by 3D spatio-
temporal information.

4.1 Community Detection Method

For spatially segmenting images described by 3D spatio-temporal signatures, we propose to apply multiresolution
CD method in two steps. In the first step, the multiresolution CD method identifies strongly-correlated replicas
in the images based on their temporal signature, and finds hidden spatial structures in them. Here if a pixel pair
is always in the same community (segment) in all the replicas, they must have a strong preference to be part of
the same segment or have a large edge weight. Similarly, if a pixel pair is not always in the same segment in
all the replicas, they must have a preference not to be part of the same segment in all replicas or have a small
edge weight. The resulting edge weights are in turn used in the second step to perform another multiresolution
CD to spatially segment the target image. This strategy incorporates both the intensity and FLT information
to determine spatial structures automatically in 3D FLIM data described by a spatio-temporal information.

To differentiate the current approach with the general image segmentation method developed in our earlier
work,15 we note that the method described in our previous article first generates R replicas by permuting a
‘symmetric’ initial state defined by one pixel per segment of the studied system. It then applies the CD algorithm
to each replica, and records the segment membership for each pixel. In contrast, for the images described by 3D
spatio-temporal signatures in this manuscript, the multiresolution CD method described in Section 3.1 considers
the spatial 2D frames of this 3D data as series of replicas, and segments each of them in its first step. Namely,
each replica is represented by a frame corresponding to each temporal location of the 3D FLT data. The weight
of each pixel pair is calculated based on the statistics of replicas, details of which are described below.

For performing the multiresolution CD in the second step, we define the edge weight pij between the ith and
jth ({i, j} ∈ {1, 2, . . . , N}) pixels of the input 3D image as follows,

pij =
1

R

R∑
r=1

δσr
i σ

r
j
, (7)

where

δσr
i σ

r
j

=

{
1, if pixel i and j belong to the same segment in replica r,

0, otherwise.
(8)

Using Eq. (7), we redefine the analogous Hamiltonian of Eq. (1) as,

H =
1

2

K∑
k=1

∑
i 6=j

(p̄− pij)
[
Θ(pij − p̄) + γΘ(p̄− pij))

]
δ(σi, σj), (9)

which we minimize for performing the multiresolution CD.1

4.2 Mixture of Gaussian Distribution Method

For performing the MGD based segmentation using the 3D spatio-temporal data, we normalize each temporal
data corresponding to pixel i (∀i ∈ {1, 2, . . . , N}) in 2D spatial location to form xi = [xi1, xi2, . . . , xid]

T , where
d = 256 in our case, see Section 2. The normalization here ensures max {xil| l ∈ {1, 2, . . . , d}} = 1. The resulting
xi (i ∈ {1, 2, . . . , N}) are used to perform the multivariate MGD as discussed in Section 3.2.

5. RESULTS

This section describes representative examples of the multiresolution CD method using an ex vivo liver tissue
sample treated using an NIR fluorescent dye. We also compare the performance of our CD method with the
MGD method.
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5.1 Multiresolution Community Detection for Varying γ

For the FLIM image of the liver tissue shown in Fig. 1A, we define the edge weight between two pixels as the
absolute FLT difference between them. We applied the multiresolution CD to solve the resulting network formed
by the image pixels as nodes. Fig. 1B shows the plots of the information theoretic overlaps between the replicas of
the multiresolution CD, such as their normalized mutual information IN and variation of information V , together
with the number of estimated segments K̂ as a function of the resolution parameter γ. Decreasing γ, the minima
of Eq. (1) leads to solutions with progressively lower intra-segment edge densities, effectively “zooming out”
toward larger structures. We determine all natural network resolutions by identifying the values of γ for which
the replicas exhibit extrema in the average of their information theoretic overlaps when expressed as a function
of γ. The extrema and plateau of the average information theoretic overlaps as a function of γ over all replica
pairs indicate the natural network resolutions.8

Figs. 1C-1G show the image segmentation results obtained by our multiresolution CD algorithm at different
resolutions. As the resolution decreases from Fig. 1C to 1G, the images show less detailed structures. In Fig. 1C,
three segments are clearly visible (light blue, green, and orange), in addition to the background segment (brown).
In Fig. 1G, only one segment (light orange) appears against the background (light blue). Figs. 1D-1F show the
results produced using the multiresolution CD algorithm with the ranges of γ that are in between the ones used
for generating Figs. 1C and 1G. The segmented images show two distinct segments located in the background.
Thus by using different resolutions γ, the multiresolution CD method is able to detect the structures at different
scales.

5.2 Performance for Images Described by 2D Spatial Information

We then compare in Fig. 2 the multiresolution CD method with the MGD method for the 2D spatial data of
the FLIM image shown in Fig. 1A. In Figs. 2A and 2C, we present the image segmentation results by the MGD
and multiresolution CD, respectively. Note that we evaluated the former method here for increasing number of
segments K, and for K > 3, the method started producing segments with pixels fewer than 100. In contrast,
the multiresolution CD method selects the number of segments automatically as discussed in Sections 3.1 and
4.1. In the current example, we used γ ∈ (0.6, 0.7) for performing segmentation using this method. To quantify
and contrast the performance of the two methods, we plot in Figs. 2B and 2D the respective normalized average
decay traces as the function of photon arrival time in the PMT. The multiresolution CD method is able to
identify segments with more distinct and diverse decay traces than the other method as seen in these two plots.
This method allows the user to adjust the resolution γ, and thus to obtain the segments with more distinct and
diverse decay traces.

To quantify the diversity offered by the respective segmentation methods, we compute the Shannon index for
each of them. Shannon index has been widely used in the literature to quantify species diversity in a habitat or
community.16 We compute this index for our study using the set described by the Euclidean distances between
every pairs of average decay traces of the estimated segments for MGD or multiresolution CD method. Towards
this end, we first bin the computed distances using intervals defined by (0.2(m−1), 0.2m], wherem ∈ {1, 2, . . . ,M}
and

M =

⌈
max

(
d̃MGD, d̃MCD

)
0.2

⌉
, (10)

where d·e denotes a ceiling function and d̃MGD and d̃MCD are the maximum computed Euclidean distances between
the average decay traces of the estimated segments for MGD and multiresolution CD methods, respectively. We
then compute the frequency of occurrence of the distances in each bin, and denote this frequency by qm for the
mth bin. Finally, we compute the Shannon index (Eq. 11) for both the MGD and multiresolution methods.

H = −
M∑
m=1

qm log qm. (11)

We obtained HMGD = 0.64 and HMCD = 1.26 for the MGD based and multiresolution CD based segment
estimates of the 2D spatial data of the FLIM image shown in Fig. 1A. This result suggests that the multiresolution
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Figure 1. Segmentation results for an ex vivo liver tissue image with two-dimensional (2D) spatial information: Panel A shows the
result generated by the multiresolution community detection (CD) method for segmenting images described by the 2D fluorescence
lifetime imaging microscopy data of an ex vivo liver tissue sample. Panel B shows the normalized mutual information IN and the
variation of information V of the replicas of the multiresolution CD method and its number of estimated segments K̂ as the function
of resolution parameter γ. We selected the values of γ at the peaks of the curve described using V, and obtained the segmented
images as shown in Panels C-G by our multiresolution CD method. Images with the higher values of γ have more precise structures,
see Panels C and D. Images with the lower values of γ have rough structures, see Panels E, F, and G.
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A B

C D

Figure 2. Comparison between the multiresolution community detection (CD) method and the mixture of Gaussian distributions
(MGD) method for images described by two-dimensional spatial information: Panel A is the segmentation result by the MGD
method. Panel B shows the normalized average decay traces corresponding to the estimated segments shown in Panel A. Panel C
is the segmentation result by the multiresolution CD method using γ = 0.7. Panel D shows the normalized average decay traces
corresponding to the estimated segments shown in Panel C. Multiresolution CD is able to identify more distinct and diverse decay
traces than the MGD method.

CD method offers almost more than two times diversity than the MGD method in segmenting FLIM images
described by 2D spatial information.

5.3 Performance for Images Described by 3D Spatio-Temporal Information

We finally compare in Fig. 3 the multiresolution CD with the MGD method for the 3D spatio-temporal version
of the FLIM image shown in Fig. 1A. In Figs. 3A and 3C, we present the image segmentation results by the
MGD and multiresolution CD, respectively. The optimal number of segments was selected respectively by the
MGD method and the CD method using the similar procedures as stated in Sections 3 and 4. To conduct the
segmentation using the multiresolution CD on the 3D spatio-temporal data, we used single resolutions in both
steps; particularly, we used γ1 = 1 and V̄1 = 2.5 in its first step and γ2 = 10 and V̄2 = 2.5 in its second step.
Both of the methods are able to produce more connected structures for the 3D spatio-temporal data than was

Proc. of SPIE Vol. 8949  89491K-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Dec 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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C D

Figure 3. Comparison between the multiresolution community detection (CD) method inspired by the replica correlation and the
mixture of Gaussian distributions (MGD) method for images described by three dimensional (3D) spatio-temporal information.
Panel A is the result obtained by the MGD method. Panel B shows the normalized average decay traces corresponding to the
estimated segments shown in Panel A. Panel C is the segmentation result by the multiresolution CD method developed for images
described by 3D spatio-temporal information, using γ1 = 1 and V̄1 = 2.5 in its first step and γ2 = 10 and V̄2 = 2.5 in its second
step. Panel D shows the normalized average decay traces corresponding to the estimated segments shown in Panel C. Both of the
methods are able to produce more connected structures for the 3D spatio-temporal data than that was obtained for the 2D spatial
data. Our results indicate that both of the methods here appear to be performing similarly in terms of generating segments with
distinct and diverse decay traces.

obtained for the 2D spatial data. The resulting normalized average decay traces of the estimated segments are
shown in Fig. 3B and 3D for the respective methods. For a clearer depiction, Fig. 3D here shows the decay
traces only for segments with number of pixels more than 300. To quantify the diversity offered by the respective
segmentation methods, we computed HMGD = 1.1 and HMCD = 1.53 for the MGD based and multiresolution
CD based segment estimates of the 3D spatio-temporal version of the FLIM image shown in Fig. 1A. This result
suggests that the multiresolution CD method offers almost more than 1.25 times diversity than the MGD method
in segmenting FLIM images described by 3D spatio-temporal information.
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6. CONCLUSION

We have demonstrated performance of a multiresolution community detection algorithm to segment two-dimensional
and three-dimensional fluorescence lifetime imaging microscopy (FLIM) data. The CD method is able to identify
structures in different scales in the input FLIM images based on an information theoretic measures. It offers
at least 1.25 times more diversity based on Shannon index than a state-of-the art method based on mixture of
Gaussian distributions, in producing distinct and diverse decay traces in the segmented images.
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APPENDIX A. INFORMATION THEORETIC MEASURES

We use information theoretic measures to calculate correlations between community detection (CD) solutions.
The CD method partitions N pixels for a replica r (∀r ∈ {1, 2, . . . , R}) into Kr segments, where segment k
(k ∈ {1, 2, . . . ,Kr}) consists of Nk pixels. The ratio Nk/N is the probability that a randomly selected pixel is
found in the segment k (k ∈ {1, 2, . . . ,Kr}). The Shannon entropy10 is

Hr = −
Kr∑
k=1

Nk
N

log2

Nk
N
. (12)

The mutual information I(r, s) between the replicas r and s ({r, s} ∈ {1, 2, . . . , R}) is

I(r, s) =

Kr∑
k1=1

Ks∑
k2=1

Nk1k2
N

log2

nk1k2N

nk1nk2
, (13)

where Nk1k2 is the number of common pixels in the segment k1 (k1 ∈ {1, 2, . . . ,Kr}) of replica r (r ∈ {1, 2, . . . , R})
and the segment k2 (k2 ∈ {1, 2, . . . ,Ks}) of replica s (s ∈ {1, 2, . . . , R}).

The variation of information V (r, s) between the two segments r and s is

V (r, s) = Hr +Hs − 2I(r, s), (14)

which has a range of 0 ≤ V (r, s) ≤ log2N .

The normalized mutual information IN(r, s) is

IN(r, s) =
2I(r, s)

Hr +Hs
, (15)

with the obvious range of 0 ≤ IN(r, s) ≤ 1.

Higher IN(·) and lower V (·) values indicate better agreement between the compared segments.

APPENDIX B. MULTIRESOLUTION ALGORITHM

We illustrate below how the multiresolution algorithm1,8 works.

To begin the multiresolution algorithm, we need to specify the number of replicas R at each resolution, the
number of trials per replica T , and the starting and ending resolutions, γ0 and γf , respectively. We typically
use the number of replicas as 8 ≤ R ≤ 12, and the number of trials as 2 ≤ T ≤ 20. We select the lowest energy
solution among the T trials for each replica. The initial state of the replicas are generated by permuting the
pixel labels in the symmetric initialized state of one pixel per community. These permutations P simply reorder
the pixel indices (1, 2, 3, . . . , i, . . . , N) → (P1, P2, . . . , PN) (with Pi the state of i under a permutation), and
thus lead to a different initial state.
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1. The algorithm starts from the initialization of the system.

2. We then minimize Eq. (1) independently for all replicas at a resolution γ = γi ∈ {γ0, γ1, . . . , γf−1, γf}.
Initially, i = 0 (i.e., γ = γ0).

3. The algorithm then calculates the average inter-replica information theoretic measures, such as IN and V,
at that value of γ.

4. The algorithm then proceeds to the next resolution γi+1 ∈ {γ0, γ1, . . . , γf−1, γf} (with γi+1 > γi).

5. We then return to Step 2.

6. After examining the case of γ = γf , the algorithm outputs the inter-replica information theory overlaps
for the entire range of the resolutions studied.

7. We examine those values of γ corresponding to the extrema in the average inter-replica information theoretic
overlaps. Physically, the resulting image segmentation for these values is locally insensitive to the change
of resolution (i.e., small changes in γ) and generally highlights prominent features of the image.

With A and B denoting graph segments in two different replicas, and Q(A,B) their overlap, the average
inter-replica overlap for a general quantity Q(·)8 is explicitly

〈Q〉 =
1

R(R− 1)

∑
A6=B

Q(A,B). (16)

Similarly, for a single replica quantity, the average is, trivially, 〈Q〉 =
∑

AH(A)/R.8

APPENDIX C. CLASSIFICATION EXPECTATION MAXIMIZATION
ALGORITHM

To maximize Eq. (6), we use a classification expectation maximization algorithm,5 steps of which we briefly
review below. For more discussion, readers might consult the classical book on machine learning written by
Hastie et al.5

1. We initialize the parameters ak, µk, and Σk (k ∈ {1, 2, . . . ,K}). To perform this initialization, we first
initialize the segment identity yi (∀yi ∈ {1, 2, . . . ,K}, i ∈ {1, 2, . . . , N}) by randomly assigning its value
to be 1, 2, . . . , or K. We perform this random assignment here by uniformly drawing a number from

{1, 2, . . . ,K}, and assign this number to y
(0)
i (i ∈ {1, 2, . . . , N}). Based on this assignment, we compute

a
(0)
k (k ∈ {1, 2, . . . ,K}) as,

a
(0)
k =

∑N
i=1 1 (y

(0)
i = k)

N
, (17)

where 1 (y
(0)
i = k) is an indicator function as given by,

1 (y
(0)
i = k) =

{
1, if y

(0)
i = k,

0, otherwise.
(18)

Similarly, we compute µ
(0)
k and Σ

(0)
k (k ∈ {1, 2, . . . ,K}) as,

µ
(0)
k =

∑N
i=1 1 (y

(0)
i = k)xi∑N

i=1 1 (y
(0)
i = k)

, (19)

and

Σ
(0)
k =

∑N
i=1 1 (y

(0)
i = k)(xi − µ(0)

k )(xi − µ(0)
k )T∑N

i=1 1 (y
(0)
i = k)

. (20)
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2. Expectation step: This step computes the posterior probabilities for all {i = 1, 2, . . . , N} and {k =
1, 2, . . . ,K} for the (l + 1)th iteration, using updated estimates of the parameters ak, µk, and Σk from
the lth iteration. This step determines how likely xi is to be the part of the kth segment. The posterior
probability is given by,

pi,k =
a
(l)
k fk(xi|µ(l)

k ,Σ
(l)
k )∑K

k=1 a
(l)
k fk(xi|µ(l)

k ,Σ
(l)
k )

. (21)

3. Classification step: This step determines for the (l + 1)th step which among k = 1, 2, . . . ,K is most likely
to be the segment identity of xi (i ∈ {1, 2, . . . , N}). Namely, we compute,

J
(l+1)
i = argmax

k
pi,k, (22)

p̂i,k′ =

1, if k′ = argmax
k

pi,k,

0, otherwise.
(23)

4. Maximization step: Using the information obtained from Eqs. (16) and (17), we update the estimates of
the parameters ak, µk, and Σk as,

a
(l+1)
k =

∑N
i=1 p̂i,k
N

, (24)

µ
(l+1)
k =

∑N
i=1 p̂i,kxi∑N
i=1 p̂i,k

, (25)

Σ
(l+1)
k =

∑N
i=1 p̂i,k(xi − µ(l+1)

k )(xi − µ(l+1)
k )∑N

i=1 p̂i,k
. (26)

5. We repeat Steps 2-4, until convergence. The convergence is determined by

|L({·}|θ(l), y(l))− L({·}|θ(l−1), y(l−1))|
|L({·}|θ(l−1), y(l−1))|

< ε, (27)

where ε is an infinitesimally small number, which was 0.001 in our case. The EM algorithm described
herein monotonically increases the cost function defined by Eq. (6),5 and the unknown parameters are
guaranteed to converge, at least locally.
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