PERFORMANCE ANALYSIS OF QUANTIFYING FLUORESCENCE OF TARGET-CAPTURED
MICROPARTICLES FROM MICROSCOPY IMAGES' #

Pinaki Sarder

Arye Nehorai

Department of Electrical and Systems Engineering
Campus Box 1127, One Brookings Drive
St. Louis, Missouri: 63130-4899, USA

Abstract— Fluorescence microscopy imaging is widely used in
biomedical research, astronomical speckle imaging, remote sens-
ing, positron-emission tomography, and many other applications.
In companion papers [1] and [2], we developed a maximum
likelihood (ML)-based image deconvolution technique to quantify
fluorescence signals from a three-dimensional (3D) image of a
target captured microparticle ensemble. We assumed both the
additive Gaussian and Poisson statistics for the noise. Imaging is
performed by using a confocal fluorescence microscope system.
Potential application of microarray technology includes security,
environmental monitoring, analyzing assays for DNA or protein
targets, functional genomics, and drug development. We proposed
a new parametric model of the fluorescence microscope 3D point-
spread function (PSF) in terms of basis functions. In this paper,
we present a performance analysis of the ML—-based deconvolution
techniques [1],[2] for both the noise models.

I. PROBLEM DESCRIPTION

In micro total analysis systems, quantum-dot (q-dot) encoded
microparticles, coated with capture reagents, are immobilized
in an array. A single array spot contains a large number of
microparticles, each of which binds the capture reagent’s spe-
cific fluorescently labeled bio-target, signified by the different
colors in Fig.1. Targets flow tangentially across the ensemble
and gradually build up on the surface of the microparticles.
These microparticles are identified, and then the targets’ con-
centrations are quantified according to the level of the fluo-
rescence signal per microparticle with a computer-controlled
epi-fluorescence microscope. In this paper, we focus on the
performance analysis of estimating fluorescence signal from
each individual microparticle under the assumption that the
targets are already identified [1]-[4]. The fluorescence intensity
image of the fluorescent layer on each microparticle is 3D
shell shaped. Fig.2 shows the synthetic fluorescence intensity
image of the meridional sections of two neighboring shells
before (Fig.2a) and after (Fig.2b) acquisition. The acquired
3D image suffers from two basic physical limitations. First,
fluorescence microscope imaging properties and measurement
imperfections distort the original 3D image and reduce the
maximum obtainable resolution by the imaging system, thereby
restricting the quantitative analysis of the 3D specimen [5].
Second, the photon-limited image recording of the fluorescence
microscope leads to Poisson noise. In Fig.2b, we observe that
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Fig.1. Immobilized particle array, containing 25 spots of
microparticles arrayed on a planar surface. Each spot within the
array contains microparticles coated with capture reagents.
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Fig.2. Synthetic fluorescence intensity images of the meridional
sections of two neighboring microparticles: (a) before acquiring the
image; (b) after acquiring the image.

the intensities of the two neighboring shells S1 and S2 overlap,
resulting in a more difficult analysis[1]. In summary, not only
does the microscope PSF distort the image of 3D shells in
the presence of Poisson noise, but so also do the intensities
of neighboring shells merged into each other. In our work, the
analysis is local, which justifies the requirement to estimate
the center locations of the shells to achieve a satisfactory
initialization for the global analysis of the whole ensemble. We
present the performance analysis of the developed estimation
methods as presented in [1] and [2] for two neighboring shells.

II. FLUORESCENCE MICROSCOPE POINT-SPREAD
FUNCTION

Fluorescence microscope 3D PSF is the 3D impulse response
of the system and is used to characterize the out-of-focus
light. Analytically, the PSF (see, Fig.3) is calculated using
the classical (diffraction-based) model of Gibson and Lanni [6],
[7], which has two computational limitations: (i) evaluation of
its partial derivatives with respect to its parameters is compu-
tationally demanding, and (ii) the number of the parameters
in it may not be optimal. Fig.3a shows the meridional (x-
z) section of a numerically computed PSF of a fluorescence
microscope. We can see that most of the energy of the PSF is
concentrated near its point of origin, represented by a Gaussian
peak. Smaller Gaussian peaks appear along the optical axis
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Fig.3. (a) Meridional section of the numerically computed PSF of a
fluorescence microscope with the signal intensity represented by
height; (b) projected top view of the signal intensity of the PSF in
the meridional section.

which distinguishes the meridional' profile of the PSF from
the conventional “X” shape [8]. The tails of the PSF in Fig.3b
resemble the diffraction ring patterns of the 3D PSF. Note that
the insignificant tails are not visible in Fig.3a. In [1] and [2], we
constructed a parametric model of the fluorescence microscope
PSF in terms of basis functions that approximates the complex
PSF model of Gibson and Lanni in the least-squares sense[1],
[2]. Assuming radial symmetry, our model is given by

2 2
h(z,y,z60) = alexp( — %(;TZQ + %))
_ 2 22 2
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where 0 = [01, 02,03, 04, 11,70, My s Mg Mg s My s Cmy 5
Cmys Cmgs Cmy, A1, A2, Cay s Cagy Cagy Caygy May s May, Mag, ma4]

is the unknown parameter vector, u(-) the unit step function,
and [-]7 the matrix transpose operation. The model (1) reduces
the number of unknowns from thousands of pixel values
to a smaller finite number of parameters. The first term of
h(z,y,z;0) in (1) approximates the PSF’s central bigger lobe.
Similarly, the second term approximates the shifted smaller
lobe along the optical axis. The terms inside the summation in
(1) model the significant tails of the PSF along the radial and
optical directions with a linear approximation of amplitudes.
Our simple model not only transfers the Gibson and Lanni’s

'The meridional section is defined as a plane along the optical axis
(perpendicular to the plane of focus) passing through the origin.

physical model[7] to a pure mathematical model but also
reduces the number of unknowns from thousands of voxel?
values to a smaller finite numbers of parameters. Additionally,
computation of the partial derivatives of (1) with respect
to elements in @ is also simplified. We impose a positivity
constraint in (1) when evaluating the estimation algorithm
using MATLAB.

In our research[1],[2], we estimate the intensity ratios and
centers of the shells to quantify their fluorescence levels using
the parametric PSF model (1). We assume both the additive
Gaussian and Poisson statistics for the noise.

III. MEASUREMENT MODEL

Physical model: Assuming isoplanatism, the fluorescence
microscope is modeled as a linear shift-invariant system, due to
the incoherent nature of the emitted fluorescent light [9]. In that
case the 3D image is represented by the convolution operation
between the PSF h(z,y,z) of the fluorescence microscope
system and the 3D object of interest f(z,y, z). The imaging
process can be expressed analytically [10] as

g(z,y,2) = h(z,y,2) ® f(z,y,2), z,y,z€R, (2

where g(z,y, z) is the measured data and ® the convolution
operation.

Statistical models: In practice, the photon-limited image
recording of the fluorescence microscope leads to Poisson noise
[9]. Although the Poisson statistics provide a realistic noise
model[11], in some applications an additive Gaussian noise
model is assumed, due to its numerical advantages during
analysis.

1) Poisson model: The quantum nature of light leads to a
Poisson modeling as follows:

By(x,y,z) = P(Blh(z,y,2)@f (2, y,2)])+P(B[b(z,y, 2)]),
3
where (3 is the reciprocal of the photon-conversion factor,
Bg(x,y,z) the number of photons measured in the detector,
P a Poisson process, and b(z,y,z) the background signal.
For fluorescence microscopy the photon-conversion factor is
proportional to several physical parameters, such as the integra-
tion time and the quantum efficiency of the detector [12]. Both
P(Blh(z,y,2) ® f(z,y,2)]) and P(B[b(z,y, z)]) are indepen-
dent Poisson random variables, and hence the measured output
is a Poisson random variable P(8[h(z,y,2) ® f(z,y,2) +
b(z,y,2))).
2) Gaussian model: The additive Gaussian noise model is given
by

z,Y,2 €R,

“)
where w(z,y, z) is an additive Gaussian noise. Note that the
background term is not modeled in the additive Gaussian noise
model, because it can be estimated and then removed from

9(x,y,2) = Wz, y,2) ® f(z,y,2) + w(z,y, 2),

2A 3D image pixel.
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the acquired image before the deconvolution operation. For
the Poisson noise model, this term cannot be incorporated in
a term that is independent of (h(z,y,z) ® f(z,y, z)) and thus
needs to be taken into account explicitly.

Under low SNR, the additive Gaussian noise model provides
a poorer description of the fluorescence microscopy imaging
than the Poisson model [5]. With the high SNR, the Gaussian
noise model performs satisfactorily by employing the central
limit theorem[11] for a large number of measurement data. It
has been widely claimed in the literature that the deconvolution
performance of the additive Gaussian noise model is inferior
to the correct Poisson noise model.

IV. ESTIMATION

The parametric forms of two neighboring shells S1 and S2
are given by

Sl(xay7z;m7xc17yC17ZC1) =

m if rlS\/(w_IC1)2+(y_yC1)2+(2_261)2ST%
0 otherwise,

(5)
52($7y72§m,7“7 Legs Yeas ZC2) =

mr  if T1 S \/(.Z‘ - xcz)2 + (y - ycz)2 + (Z - Zcz)2 S T2,
0 otherwise,

6

where the two shells’ unknown centers are (., , Yc, , zc, ) and
(Teys Yeys Zcy)» and the unknown fluorescence intensity levels
are m and mr with an unknown intensity ratio r. The known
inner and outer radii of s(.)(-) are 7y and ro and the principal
parameters of interest are M, 7, Tc, , Yoy s Zeys Tegs Yoo, aANA Ze,.
We redefine,

0($7y>z§7"a $C17y0172017x027y0272:02) =

1 if 7‘1§ \/(x—$c1)2+(y—yc1)2+(Z—Zc1)2§7"27
roif vy < \/(1‘_5502)2+(y_y02)2+(Z_ZCZ)2STQ?
0 otherwise.

u((v/22 +y2) —ro)ulre) @ o) |- (8)

The available measurements are {g(z,y, z), 1<z <L, 1<y<P,
1<z<K}.

Estimation under Gaussian noise: The noise w(z,y, 2)
is assumed to be additive independent from voxel to
voxel, Gaussian distributed with zero mean and un-
known variance o.2. For convenience, we define ¢ =
[anndZCnmeyC27ZC27T7 01,02,03,04, 1,70, Mmy; Mm,,
Mg Mg s Cimy s Cima» Cimg > Cmy |- and 9 = [a1, a2, Ca; , Cay, Cag
ca4,mal,m32,ma3,ma4]T. With these assumptions and nota-
tions we can lump the measurements into vector form: g =
mN (@) + w, where g is an (LPK x 1) dimensional vector
whose (LP(z—1)+L(y—1)+)th component is g(z, y, z) and
similarly for w. The matrix N (¢) is of dimension (LPK x10)
and its (LP(z — 1) + L(y — 1) + z)th row is given by

[exp(f %( S +y ))> ® o(- exp( 2((2(751) +
u((\/m) —70)u(10) @ 0(+), v v
expl - (2 LT ) (/T ) - )
u(ro) @ o), ((v/a? + y2) — o)
exp (- 3 () Yo () - )

u(ro) @ o(-),

exp< - % ((Z+7nm1 (\/:j:y2)76m1)2 >)

(VT P) — ro)ulro) @ o(-)] . ©)

The ML estimate of the parameters (see, e.g., [1]) is

@ ¢ = argmax{g” Px(y)g}, (10)
Hence, after the convolution operation we obtain — R o R
md = [NT(@)N(¢)] "N (¢)g, (1)
h(xvya'z;g)@[Sl(xayvz;maICUyCleCl)_'_ 1 Tl
=(LPK) g Py(¢)g. (12)
52 ($, Y, 251, T, Loy Yoo s ZCz)} =

where Px(¢p) is the projection matrix on the column space of
may {exp( -1 < G +y ))> ® 0(-)} + N(p)[13], and P+ (@) the complementary projection matrix,

given by

2
mas [exp( - %(%;“) + &y ))) ®o<->} Px() = N(@)INT(#)N ()] "N ()
+ 38 m(ca, — may (Va2 + 42) — 7o) Py (¢) =1 — Pn(p). (13)
expf — 1 (24, (/T2 4y?) —cmy )2 Estimation under Poisson noise: We evaluate the analysis
b 2 04® using the noise model (3), where the noise is assumed to be
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independent from voxel to voxel. The unknown background in-
tensity is assumed to be constant as {b(x,y,2) =7 V z,y,z €
R}. We define

i(z,y, 20, mI) = h(2,y,2:0) @ s(2,y, 2,M, Tey s Yer » 2y )-

(14)
We lump the measurement intensity values g(z, y, z) into vector
form for each co-ordinate (z,y,z) as

g="P(i(v)+71), (15)

where P(-) is a vector whose element is a Poisson random vari-
able P(-), v = [T, md7]7T, i(v) an (LPK x 1)-dimensional
vector whose (LP(z — 1) + L(y — 1) + x)th component is
i(z,y, z;p,md), and 1 an (LPK x 1)-dimensional vector of
elements 1. We maximize the log-likelihood function

J(a) = g"In(i(v) +71) — 17 (i(v) + 11) (16)

to obtain the ML estimate of the unknown parameters where
a = [vT,7]T is the parameter vector[2]. A detailed derivation
of (16) from (3) is provided in [2].

V. PERFORMANCE BOUND ANALYSIS

In our research, we choose the Cramer-Rao bound (CRB)

as a performance measure[1],[2]. CRB is the lowest bound on
the variance of any unbiased estimator under certain regularity
conditions with the important features of being universal,
i.e., independent of the algorithm used for estimation among
the unbiased ones, and asymptotically tight, meaning that for
certain distributions, there exist algorithms that achieve the
bound as the number of samples become large. Note that the
estimate achieves the CRB asymptotically. In brief, the CRB
is a performance measure that may be useful for determining
the best accuracy we can expect for a certain algorithm. In
our research, we obtain satisfactory CRBs on the variance of
unknown parameters.
Performance under Gaussian noise: We define as the para-
meter vector, p(g) = mN ()9 the mean of the measurement
vector g, and L the Fisher information matrix of dimension
(31x 31) with the (¢, k)thentry {L; 5,1 <7 <31,1 <k <31}
given as

(oo 1s9))] [ s9))].

L= 12 (17)

O-E
where v; is the ith element of the parameter vector v. The CRB
for the unbiased estimates of the parameters in v is derived
from the diagonal elements of the matrix L1 [13].
Performance under Poisson noise: The Fisher information
matrix L is a (32 x 32) matrix with (¢, k)th entry {L; ,1 <
1<32,1<k<32}as

9_(3(v) +71)

o . ™| s
Lij= 5[3% (i(v) + 71)} [a i

;o (18)

where the division of vectors is performed element to element,
a; is the ¢th element of the parameter vector .. The derivation

of (18) is provided in the following.
Proof: From (16) we have

a0 log(p(Bg(-); 2y, 2 € R)) = ﬂ{Zmﬁy,zeR

g(-)a%j(h(')®f(')+b(~)) o
{ h(ORF()+b() - E(h() ® f() + b())}:| (19)

Hence,

e ou(p(Ba( iz 2 €R) = 5| Ty e

a(+) aii (h(-)®f(-)+b(-))Tij(h(-)®f(-)+b(-))
(h(-)®F()+b(-))?

9() 52 (M@ ()+5()
CIOEYORI0)

s (h() @ f() + b(-))}].

Since E[g(-)] = (h(-) ® f(-) + b(-)), where E[-] denotes an
expectation operation, we obtain from (20)

(20)

*E[&ffaj log(p(By(-); z,y, 2 € R))| = ﬂ{zmﬁy,zeR

a%i(h(-)®f(-)+b(-))B%j(h(-)®f(-)+b(-)) )1
ROBI+50) 2D
Therefore {L; ,1 <14 < 28,1 <k < 28} is given by,
0 152 (i(v) + 71)
Liy = ) 1 o - 22
Pk ﬁ{@ai ) +7 )} [ (i(v) +71) 22

VI. NUMERICAL EXAMPLES

Two neighboring spherical shell-like objects (shells S1 and
S2 in Fig.10) are generated on a 129 x 129 x 129 sampling
lattice, with a sampling interval of 0.179um along the XY,
and Z directions. Each shell has a diameter of 4.3um and a
thickness of 1.43um, respectively, and the distance between
their centers is 7.16um. The maximum intensities of the shells

CRB
CRB

0! A\ | L oL T
20 120 0
SNR(db)

(@) (b)

Fig.4. Crarher-Rao bound on the relative intensity r of shells S1 and
S2 as a function of SNR and 3 for the: (a) additive Gaussian noise
model, and (b) Poisson noise model, respectively.
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are 10 and 30, respectively. The simulated confocal images are
obtained by convolving the object with a calculated PSF using
(1). For the model (1), we use these parameters: 0,2 = 6.7,
092 = 5.7, 032 = 3.36, 04> = 10.92, py = 11.29, ro = 1,
My, = 2.0262, my,, = 0.8465, my,, = —1.3135, my,, =0,
Cm, = 5.44, ¢y, = 0.9727, ¢y, = —1.6, ¢y, = 0.0362, a1 =
0.4273, az = 0.09, c,, = 0.0221, ¢,, = 0.0103, c,, = 0.0151,
ca, = 0.0011, m,, = 0.0009, m,, = 0.0002, m,, = 0.0004,
mg,, = 0. The background signal intensity is assumed to be
0. Additive Gaussian or Poisson noise of varying levels was
generated in the image. For the Gaussian noise we define a
SNR as

max; (h()®f(-))i — mini(h(')@)f('))i.

Oe

SNR = (23)

For the Poisson statistics, the noise is completely characterized
by the photon conversion factor . In our simulations we
choose the mean of the Poisson process equal to 5(h(-)®f(-)+
b(+)); thus the number of detected photons is proportional to
(. As a consequence, we choose § as a SNR measure for
the Poisson statistics. In Fig4a and 4b, we plot the CRB
of the relative intensity r of shells S1 and S2 as a function
of SNR and ( for the additive Gaussian and Poisson noise
statistics, respectively[1],[2]. In Fig.5a and 5b, we compare
the CRB and mean-square error (MSE) of the estimated ycl
of S1 as a function of SNR under Gaussian and Poisson noise,
respectively. We observe that the MSE of the estimated ycl is
closer to its CRB for high SNR and deviates significantly for
lower SNR.

VII. CONCLUSION

In this summary, we addressed the performance bound
analysis for quantifying fluorescence signals of gq-dot—encoded
microparticles using the CRB analysis. An analysis-based
performance measure such as CRB is necessary[14] in our
application, since the goal of deconvolution is to improve the
quantitative analysis of the fluorescence microscopy images.
For both noise models, a lower value of CRB in the higher
SNR regions signifies that the MSE of the estimated parameters
can get closer to the CRB value for high SNR, using a ML—
based image deconvolution technique for deconvolving of 3D
fluorescence microscopy images[1],[2].
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