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Abstract—We design microsphere arrays with predetermined
positions of microspheres, for capturing targets at low con-
centrations. To optimize the design parameters, we compute
the Ziv-Zakai bound (ZZB) on the errors in estimating the
target concentrations. We numerically demonstrate our design by
computing the minimal distance between the microspheres and
the optimal imaging temperature, for a desired level of errors.
We also validate that, at low target concentrations, the statistical
design using the ZZB is more precise than that using the posterior
Cramér-Rao bound. We further quantitatively evaluate the effect
of the fluorescence microscope point-spread function on the
design performance, which provide useful guides to the device
design and implementation. The key advantages of the proposed
microsphere arrays are error-free target identification, simplified
data analysis, high packing density, and reduced cost.

I. INTRODUCTION

Microsphere arrays are used to detect and analyze con-

centrations of targets, such as mRNAs, proteins, antibodies

and cells [1]. They have numerous applications including

fundamental research, medical diagnostics, and drug discovery

[2]. Compared with the conventional two-dimensional (2D)

microarrays, microsphere arrays enable faster reaction due to

their higher surface-to-volume ratio. However, in most existing

microsphere arrays, the microspheres are placed randomly on

a substrate [1]. The random placement makes their packing

inefficient and subsequent data processing complicated. For

example, imaging the randomly placed and clustered micro-

spheres requires complex segmentation [3]. In addition, the

microspheres are embedded with quantum-dot (QD) barcodes

to identify the targets. The noise in their measured QD spectra

makes them vulnerable to errors in identifying targets [4].

To overcome these drawbacks, we designed microsphere

arrays with predetermined positions of the microspheres. We

termed this feature position-encoding [5]. The distance be-

tween the position-encoded microspheres can be optimized to

increase packing efficiency. These microspheres then capture

specific targets of interest, and their predetermined positions

help identify targets without errors. The error-free identifica-

tion feature also simplifies the complex image segmentation

and data analysis. Furthermore, the microsphere arrays enable

simultaneous detection and quantification of multiple types of
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targets, by coding microspheres with different receptors; this

is impossible for existing microsphere arrays [1].

In our previous work, we designed the position-encoded

microsphere arrays by computing the posterior Cramér-Rao

bound (PCRB) [6] on the mean-square error (MSE) in esti-

mating the concentrations of captured targets. At high signal-

to-noise ratio (SNR), the PCRB can be achieved asymptot-

ically by the maximum likelihood estimates (MLE) of the

concentrations. However, the PCRB only analyzes the local

MSE, and it is not accurate at low SNR, particulary when

the target concentration is low [7]. Thus, our previous design

is applicable to limited scenarios. Nevertheless, in reasonable

biological experiments, the concentrations of biological targets

in the microarray are typically low [8], yielding low SNR

signals in the captured images. Therefore, the PCRB cannot

precisely characterize the statistical performance of our device,

hindering us from accurately choosing design parameters.

To mitigate this limitation, we propose using the Ziv-Zakai

bound (ZZB) [9] as the performance measure in our design.

The ZZB is useful in analyzing the global MSE performance

of a minimum MSE estimator for a statistical model. It is tight

under all SNRs and it provides the asymptotic SNR threshold

below which the MSE increases sharply [7]. Therefore, we

anticipate that the ZZB is superior to the PCRB in precisely

bounding the MSE of the target concentration estimation.

Consequently, the ZZB allows us to accurately choose design

parameters, such as the minimal distance between the micro-

spheres and the optimal imaging temperature under a desired

error, which ensures high packing density and minimizes

device cost. Based on the ZZB, we further study the influences

of the microscope point-spread function (PSF) [10] and image

sensor resolution on the device performance, which provide

valuable guides to device implementation practice.

In Section II, we introduce the configuration of the micro-

sphere arrays. In Section III, we derive the ZZB model for

the performance analysis. In Section IV, we use a numerical

example to compare the design using the ZZB to that using

the PCRB. We also discuss the strategies to choose the design

parameters. Finally, we conclude in Section V.

II. MICROSPHERE ARRAYS CONFIGURATION

In this section, we review the configuration of microsphere

arrays and their image acquisition process. Fig. 1(a) shows

the uniform 2D grid layout for the microspheres arrays. The

microspheres (∼5 μm in diameter) are made of polystyrene.

They are placed in predetermined positions and are encoded

by dedicated receptors to capture targets of interest (Fig. 1(b)).

1694978-1-4673-0323-1/11/$26.00 ©2011 IEEE Asilomar 2011

Authorized licensed use limited to: University of Florida. Downloaded on December 14,2022 at 00:22:46 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 1: Schematic diagram of the proposed position-encoded microsphere
arrays. (a) 2D Layout. (b) A target molecule captured on a microsphere.

The receptors are antibody molecules. To detect and quantify

the targets, nanospheres (∼100 nm in diameter) are embedded

with identical QDs and conjugated with receptors. These QD-

embedded nanospheres allow label-free targeting and enhance

the detection sensitivity.
To perform the detection, we pass a microfluid stream with

the targets through the microsphere arrays and periodically

release a cocktail of nanospheres. In this flow process, the

targets are captured by the intended microspheres on one

side and tagged by the nanospheres on the other. Then, all

nanospheres’ QDs emit light upon excitation by UV light, and

the emitted light is in the form of a spherical shell around each

microsphere.
To image the target-captured specimen, we focus a fluo-

rescence microscope at different depth planes of the arrays,

parallel to the xy plane of the device in Fig. 1(a). We then

collect a series of 2D cross-section images of the lights emitted

by the nanospheres’ QDs. Thus, each cross-section image of

the shell light around a microsphere forms an image of a ring.

The levels of the light intensities are proportional to the target

concentrations on the microspheres.
We employ a CMOS image sensor [11] to capture the

images. In the image acquisition, the researchers in [1] em-

ployed expensive, cooled CCD detectors. Alternatively, we

use inexpensive CMOS image sensors. These sensors have

high sensitivity, but produce greater noise and require cooling

using external electronics. To minimize the cost, we use the

performance measure to select the optimal temperature Topt

as a trade-off between minimal cooling vs. maximal accuracy.

III. PERFORMANCE ANALYSIS

In this section, we first present the statistical measurement

model in estimating the target concentrations from the micro-

sphere arrays. Then we derive the ZZB performance measure

on the corresponding MSE.

A. Measurement Model
The measurement at the image sensor output, in fluores-

cence microscopy imaging of the illuminating object [3] is

g(x, y, z;θ) = s̃(x, y, z;θ) + wb(x, y, z;θ), (1)

where, x ∈ {x1, x2, . . . , xK}, y ∈ {y1, y2, . . . , yL}, and

z ∈ {z1, z2, . . . , zM}; K, L and M denote the numbers of

measurement voxels, and s̃(x, y, z;θ) is the microscope output

s̃(x, y, z;θ) = s(x, y, z;θ)⊗ h(x, y, z), (2)

where s(x, y, z;θ) is the illuminating object, h(x, y, z) is the

fluorescence microscope PSF, ⊗ is the convolution operation,

and wb(x, y, z;θ) is the background noise.

1) Object Model: Recall that the target concentrations on

the microspheres are proportional to the intensity levels of the

shell lights. Therefore, the object model for two neighboring

microspheres is given by

s(x, y, z;θ) = ssh(x, y, z; θ1) + ssh(x− d, y, z; θ2), (3)

where, d is the distance between the two microspheres.

θ = [θ1, θ2]
T , θ1 and θ2 are the unknown intensity levels per

voxel of the single shells ssh(x, y, z; θ1) and ssh(x−d, y, z; θ2),
respectively. The single shell is

ssh(x, y, z; θi) =

{
θi if r1 <

√
x2 + y2 + z2 < r2

0 otherwise
(4)

where i ∈ 1, 2 indexes the two neighboring microspheres.

In general, no additional information other than the maxi-

mum intensity levels θmax are available, so we adopt a uniform

prior distribution for θi of the ith shell; θi ∼ U(0, θmax),
∀i ∈ 1, 2. Thus, we express the object model as

s(x, y, z;θ) = o(x, y, z, d) · θ (5)

o(x, y, z, d) = [I
[r1<

√
x2+y2+z2<r2]

(x, y, z, d),

I
[r1<

√
(x−d)2+y2+z2<r2]

(x, y, z, d)],

where IA(·) is an indicator function.

The microscope output is given by

s̃(x, y, z;θ) = s′(x, y, z, d) · θ, (6)

where s′(·) = o(x, y, z, d)⊗ h(x, y, z).
2) PSF Model: We consider the PSF to be 3D Gaussian [10]

h(x, y, z;σ2
1 , σ

2
2) = exp

(
−x2 + y2

2σ2
1

− z2

2σ2
2

)
, (7)

where σ2
1 and σ2

2 are known parameters of the PSF function.

This model preserves the symmetry and the asymmetry of the

classical Gibbson and Lanni PSF model along the focal planes

and the optical direction, respectively.

3) Noise Model: Assuming ideal operation in the imaging

process, the external noise sources (the scattered excitation and

background light) are eliminated. Additionally, we ignore the

intrinsic noises such as the flicker (1/f) and dark current,

as they can be largely eliminated in current sensors [11].

Furthermore, we focus on low light intensity so that the shot

noise is negligible [12]. Therefore, in our design, the dominant

source of noise is reset and readout transistors thermal noise.

The thermal noise is modeled by wb(·), which is zero-

mean Gaussian with variance σ2
b , and is independently and

identically distributed from voxel to voxel. The noise level σ2
b

is a function of temperature T [11]

σ2
b (T ) = kT/B, (8)

where B is a constant that relates to the microscope and

image sensor specifications and the external environment, and

k is the Boltzmann constant. We assume B is known, or it
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can be estimated from the images of target-free microspheres

embedded with QDs.

Therefore, the measurement g(x, y, z;θ) is Gaussian dis-

tributed with mean s′(x, y, z, d) ·θ and variance σ2
b , with SNR

SNRdB = 10log10

⎛
⎜⎜⎝ ∑

x,y,z:s′
i(·)>δ

i=1,2

(s′(x, y, z, d) · θmax)
2

4σ2
bN

⎞
⎟⎟⎠ , (9)

where δ is a small user-chosen constant and N is the number

of voxels with s′i(·) > δ.

We group the measurements into a vector form

g = S′θ +wb, (10)

where g and wb are (KLM × 1)-dimensional vectors whose

(KL((z−z1)/Δz)+K((y−y1)/Δy)+((x−x1)/Δx)+1)th

components are g(·) and wb(·), respectively; S′ is a (KLM ×
2) matrix whose (KL((z − z1)/Δz) + K((y − y1)/Δy) +
((x−x1)/Δx)+1)th row is [s̃′1(·) s̃′2(·)]. In these expressions,

Δx = (xk+1 − xk) with k ∈ {1, 2, . . . ,K − 1}; Δy and Δz
are similar to Δx. Therefore, g ∼ N (S′θ, σ2

b I), where I is

the identity matrix.

B. The Ziv-Zakai Bound

We compute the ZZB on the MSE in estimating the

unknown parameters θ as the performance measure in our

design. Below, we briefly present the concept of the ZZB

[9]. Let g denote the measurement vector, and θ̂(g) denote

the estimator of the unknown n-dimensional random vector

θ = [θ1, θ2, . . . , θn]
T . Consider the estimation error ε =

θ̂(g)− θ with covariance matrix (MSE) Rε = E[εεT ], where

the expectation E(·) is over g and θ, and θ has a known prior

probability density function (pdf) pΘ(θ). Then, the ZZB is

computed through the following inequality:

uTRεu ≥ 1

2

∫ ∞

0

V
{

max
e:uT e=b

[ ∫
Rn

(pθ(η) (11)

+pθ(η + e))Pmin(η,η + e)dη

]}
bdb,

where u is any n-dimensional vector, V is a ’valley-filling’

function, e is the offset, and Pmin(η,η + e) is the minimum

probability of error for the hypothesis test of a detection

problem

H0 : θ = η with g ∼ pg|θ(g|η) (12)

H1 : θ = η + e with g ∼ pg|θ(g|η + e),

with Pr(H0) = pθ(η)/(pθ(η) + pθ(η + e)) = 1− Pr(H1).
It is generally challenging to derive a closed-form expres-

sion of the general bound (11), because analytically deriving

Pmin(·) and computing V(·) and the related integral are

difficult. In many practical cases, however, a weaker bound is

derived by omitting V(·) and equating the prior probabilities

of the hypothesis Pr(H0) = Pr(H1) = 1
2 . Consequently,

1
2 (pθ(η)+pθ(η+e)) is replaced with min(pθ(η), pθ(η+e)).

C. Performance Analysis using the Ziv-Zakai Bound

We employ the weaker ZZB and define the performance

measure as the sum of the ZZBs on the MSEs in estimating

θ1 and θ2. In other words, we use u = [1, 0]T and u =
[0, 1]T to derive ZZB(θ1) and ZZB(θ2), respectively. Thus

the performance measure is PZZB = ZZB(θ1)+ZZB(θ2). The

offset is e = [e1, e2]
T with e1, e2 ∈ [−θmax θmax]. Pmin(η,η+

e) is obtained from the log likelihood-ratio test [6]

Pmin =
1

2
{Pr(Λ > 0|H0) + Pr(Λ < 0|H1)} (13)

= Q

(√
eTS′TS′e
2σb

)
,

where Λ(g,θ) = log p(g|H1)
p(g|H0)

and Q(z) =
∫∞
z

1√
2π

e−
s2

2 ds.

Note that Pmin is only a function of the offset e between the

hypotheses, so the equal hypothesis ZZB simplifies to

uTRεu ≥
∫ θmax

0

max
e:uT e=b

A(e)Pmin(e)bdb, (14)

where A(e) =
∫
R2 min(pθ(η), pθ(η + e))dη.

Recall that the prior distributions for θ1 and θ2 are uniform

and independent, i.e., pΘ1(θ1) = pΘ2(θ2) = 1
θmax

. Therefore,

A(e) is expressed as

A(e) =
(θmax − |e1|)(θmax − |e2|)

θ2max

. (15)

We use the grid-search method to find the max(·) and

numerically integrate the integral at a finite number of discrete

points using Reimann sums.

Note that in our design, the prior distribution is uniform,

and the valley-filling function V(·) is trivial in (11) because

the term inside it is nonincreasing in b. Therefore, the equal

hypothesis bound in (14) is as tight as the general bound (11).

IV. NUMERICAL EXAMPLE

This simple example illustrates our concept for the sta-

tistical design and strategies to obtain the optimal design

parameters. In particular, we propose a spherical object model

for the shells, i.e., we let r1 = 0 μm and r2 = 2.5 μm.

We also use realistic values for design parameters from a

training experiment [5] (the prior intensities, the background

noise variance, the microscope PSF variance and the image

sensor sampling voxels). Namely, we use θmax = 0.053,

σ2
b = 4.23× 10−4 at T = 10 ◦C, σ2

1 = 6 μm2, σ2
2 = 20 μm2,

Δx = Δy = 0.4 μm/pixel and Δz = 0.5 μm. Therefore,

the light intensity is low compared to the level of background

noise; in other words, the SNR computed by (9) is low.

A. Comparison between Performance Measures Computed by
ZZB and PCRB

To illustrate that the design using the ZZB outperforms that

using the PCRB at low target concentrations (low SNRs), we

compare the corresponding performance measures PZZB and

PPCRB. We have derived PZZB in section III, and PPCRB is [5]

PPCRB = trace(J−1), (16)

1696

Authorized licensed use limited to: University of Florida. Downloaded on December 14,2022 at 00:22:46 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

(c)

Fig. 2: Comparisons between Ziv-Zakai Bound and Posterior Cramér-Rao
Bound as a function of distance d under increasing SNRs from (a)-(c). Arrows
indicate dopt.

where J is the Fisher information matrix with elements

Jij = Eθ

[∑
z

∑
y

∑
x

(
s′is

′
j

σ2
b

)]
, i, j = 1, 2. (17)

Eθ[·] is the expectation with respect to the pdf pΘ(θ).
We define the estimation error-to-signal ratio (ESR) as

ESR =

√
MSE bound

0.5θmax

. (18)

Fig. 2(a)-(c) present PZZB and PPCRB as a function of

increasing SNRs. Generally, we observe that with the increase

of d, PZZB(d) and PPCRB(d) first decrease and then essentially

(a) (b)

(c)

Fig. 3: Design Results. (a) Performance as a function of distance d at
temperature T = 0 ◦C. The arrow indicates dopt. (b) Performance as a
function of T at d = 8 μm. (c) Performance as a function of T and d.

flatten. Increased distance between the microspheres reduces

the interactions between the shell lights. Therefore, the corre-

sponding errors in estimating the light intensities decrease. As

the interactions reduce to a negligible level compared to that

of the background noise, which is invariant with respect to d,

the errors flatten. Thus, we denote the flattening point as dopt.

However, PZZB(d) is always tighter than PPCRB(d) under

different SNRs, especially at low SNRs. Moreover, as SNR

increases, dopt from PZZB(d) increases, while there is a very

slight change in dopt from PPCRB (around 10 μm). It should

be noted that the shape and magnitude of PZZB(d) eventually

approach those of PPCRB(d) as SNR becomes large. Therefore,

compared to PPCRB, PZZB(d) accurately resembles the MSE

under all SNRs, which suggests that ZZB is a more applicable

performance bound for our statistical design.

B. Selection of Optimal Distance and Imaging Temperature

Fig. 3(a) shows that the optimal distance dopt between the

microspheres is 8 μm, at the imaging temperature T = 0 ◦C.

Fig. 3(b) presents the effect of T on the performance measure

PZZB(T ), at a fixed distance d = 8 μm. We observe that the

performance degrades with increased temperature. Therefore,

temperature is a critical parameter for employing less expen-

sive CMOS image sensors, while attaining a desired estimation

accuracy.

Fig. 3(c) presents a 3D plot of the effects of the micro-

spheres’ distance and the imaging temperature on the statistical

design performance.
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(a)

(b)

Fig. 4: Design Results. (a) Performance measure under different microscope
PSF variance (1)-(3) as a function of distance d. Arrows indicate dopt. (b)
Simulated xy plane fluorescence intensity images of neighboring microspheres
corresponding to (a)(1)-(3). The microspheres are separated at dopt, at z =
0 μm.

C. Influence of Microscope Point-Spread Function

In the fluorescence microscopy images, PSF often causes the

most severe distortion. Due to the PSF, even an arbitrarily high

magnification fluorescence microscopy cannot enable us to see

infinitely small details [13]. Therefore, it is of great importance

to understand the influence of the PSF in our design.

In Fig. 4(a), we present the performance measure under

the microscope PSF variance σ2
1 = 6 μm2, 7 μm2, 8 μm2

at different distances d, while keeping σ2
2 = 20 μm2 fixed

along the z-axis. The performance measure and optimal dis-

tance dopt increase within σ2
1 , because larger PSF variance

induces more blur around the illuminating objects, and thus the

distance between microspheres has to be larger to reduce the

interactions to a negligible level. Moreover, the performance

seems more sensitive to the PSF variance than to the distance.

Though a microscope of small PSF variance ensures good

performance, it should be noted that this microscope may be

sophisticated and costly [13]. Therefore, we need to choose

the microscope PSF as a trade-off between cost and accuracy.

Fig. 4(b) presents the corresponding xy focal plane intensity

images of the neighboring microspheres separated at dopt and

at z = 0 μm, and it offers visualized illustration of how

the PSF affects the imaging of the objects. Note that dopt is

smaller than the microsphere diameter after the PSF blur. For

example, in Fig. 4(b)-(1), dopt = 7.8 μm. This smaller dopt
is expected, as we discussed in IV-A that dopt is chosen at

the flattening point, before the point at which the interactions

completely disappear.

V. CONCLUSIONS

We presented the statistical design of position-encoded

microsphere arrays for capturing targets at low concentrations.

To optimize the design parameters, we computed the ZZB

on the errors in estimating the target concentrations. With a

numerical example, we verified that at low target concentra-

tions the design using the ZZB is superior to that using the

PCRB. In this example, we also demonstrated the strategies for

choosing the minimal distance between the microspheres and

the optimal imaging temperature, with a desired level of errors.

We further quantitatively simulated that the microscope PSF

has significant influences on the design performance. In our

future work, we will conduct imaging experiments to validate

the measurement model and compare the imaging performance

of our device to that of existing ones.
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