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In the current era of artificial intelligence, robust automated image 
analysis is attained using supervised machine-learning algorithms. 
This approach has been gaining considerable ground in virtually 

every domain of data analysis, mainly since the advent of neural 
networks1–4. Neural networks are a broad range of graphical models, 
whose nodes are variably activated by a nonlinear operation on the 
sum of their inputs3,5. The connections between nodes are modu-
lated by weights, which are adjusted to alter the contribution of that 
node to the network output. These weights are iteratively tuned via 
backpropagation so that the input of data leads to a desired output 
(usually a classification of the data)6. Particularly useful for image 
analysis are convolutional neural networks (CNNs)2,3, a specialized 
subset of neural networks. CNNs leverage convolutional filters to 
learn spatially invariant representations of image regions specific to 
the desired image classification. This allows high-dimensional fil-
tering operations to be learned automatically, a task that has tradi-
tionally been performed through hand-engineering. The potential 
of neural networks exceeds that of other machine-learning tech-
niques7, but they are problematic in certain applications. Namely, 
they require significant amounts of annotated data to provide gen-
eralized high performance.

Easing the burden of data annotation is arguably as important 
as generating state-of-the-art network architectures, which without 
sufficient data are unusable8,9. Many large-scale modern machine-
learning applications are based on cleverly designed crowd-sourced 
active-learning pipelines. In an era of constant firmware updates, 
this advancement comes in the form of human-in-the-loop train-
ing10–12. Initiated by low classification probabilities, machine-
learning applications, such as automated teller machine character 
recognition, self-driving cars and Facebook’s automatic tagging, all 
rely on user-refined training sets for fine-tuning neural network 
applications post deployment3. These ‘active learning’ techniques 

require users to ‘correct’ the predictions of a network, identifying 
gaps in network performance13.

Although computational strategies for image analysis are increas-
ingly being translated to biological research, the application of neu-
ral networks to biological datasets has lagged their implementation 
in computer science14,15. This late adoption of CNN-based methods 
is largely due to the lack of centrally curated and annotated biologi-
cal training sets16. Due to the specialized nature of medical datasets, 
the expert annotation needed to generate training sets is less feasible 
than for traditional datasets17. This issue creates challenges when 
trying to apply CNNs to medical imaging databases, where domain-
expert knowledge is required to perform image annotation. This 
annotation is expensive, time-consuming and labour-intensive, and 
there are no technical media that enable easy transference of this 
information from clinical practice to training sets18.

Despite the challenges, using neural networks to segment and 
classify tissue slides can aid clinical diagnosis and help create 
improved diagnostic guidelines based on quantitative computational 
metrics. Moreover, neural networks can generate searchable data 
repositories19, providing practicing clinicians and students access to 
previously unavailable collections of domain knowledge20–22, such 
as labelled images and associated clinical outcomes. Achieving such 
access on a large scale will require a combination of curated patho-
logical datasets, machine-learning classifiers3, automatic anomaly 
detection23,24 and efficiently searchable data hierarchies21. Finally, 
pipelines will be needed for creating easily viewable annotations on 
pathology images. Towards this aim, we have developed an iterative 
interface between the successful semantic segmentation network 
DeepLab v225 and the widely used whole-slide image (WSI) viewing 
software Aperio ImageScope26, which we have termed Human AI 
Loop (H-AI-L) (Fig. 1). Put simply, the algorithm converts anno-
tated regions stored in XML format (provided in ImageScope) into 
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image region masks. These masks are used to train the semantic seg-
mentation network, whose predictions are converted back to XML 
format for display in ImageScope. This graphical display of the net-
work output is an ideal visualization tool for making segmentation 
predictions on WSIs. It allows the entire tissue slide to be viewed, 
with panning and zooming, and it uses the efficient JPG2000 decom-
pression27 of WSI files provided by ImageScope. Note that while the 
current code works only in ImageScope, the proposed system can 
easily be adapted for other WSI viewers, such as the universal viewer 
Pathcore Sedeen28, as well as ImageJ. Note also that ImageScope and 
the DeepLab architecture are not currently approved for diagnostic 
procedures. Therefore, for any potential application of our system 
in a clinical workflow, our pipeline needs to be adopted using anno-
tation and machine-learning tools that are currently approved for 
clinical diagnosis.

Using this open-sourced pipeline, a supervising domain expert can 
correct the network predictions (deleting false positives and annotat-
ing false-negative regions) before initiating further training using 
the newly annotated data. Thus, networks can be trained either ‘on 
demand’ or as the data become available. Using H-AI-L, we are able 
to significantly reduce the annotation effort required to learn robust 
segmentations of large microscopy images28. Adapting this technique 
to other modes of medical imaging is highly feasible, which we dem-
onstrate using magnetic resonance imaging (MRI) data.

Results
To evaluate the utility of H-AI-L, we first quantified its performance 
and efficiency in segmenting histologic sections of kidney tissue, 
beginning with glomerular localization in mouse kidney WSIs4,29–32. 
This glomeruli segmentation network was trained for five iterations, 
using a combination of periodic acid–Schiff (PAS) and haematoxy-
lin and eosin (H&E)-stained murine renal sections. For more data 
variation, streptozotocin (STZ)-induced diabetic nephropathy33–36 
murine data were included in iteration 4 (Table 1). To validate the 
performance of our network, we use four holdout WSIs, including 
one STZ-induced WSI.

During the training process, we observed approximately four- to 
tenfold increases in average glomerular annotation speed between 
the initial and end iterations (Fig. 2a). Compared to each annota-
tor’s baseline speed, these increases represent time savings of 81.4, 
82 and 72.7% for annotators 1, 2 and 3, respectively. The prediction  

performance increase is shown in Fig. 2b, where the network 
reaches nearly perfect performance on a holdout dataset by anno-
tation iteration 4. One side effect of using iterative annotation is 
intuitive qualification of network performance after each interac-
tion. That is, an expert interacts with the network predictions after 
each training round, visualizing network biases and shortcomings 
on holdout data. Two examples of evolving network predictions are 
highlighted in Supplementary Video 1.

To improve network prediction efficiency, we designed a two-
stage segmentation approach. This uses two segmentation networks, 
first identifying hotspot regions at 1/16th scale and then segment-
ing them at the highest resolution. This approach (which we call 
multi-pass segmentation) provides a better F-measure (F1 score)37,38 
(Fig. 2b) than a full-resolution pass, as well as approximately 4.5-
times faster predictions (Fig. 2c). An overview of this method can 
be found in Supplementary Fig. 1.

Quantification of the performance achieved by our method in 
WSIs is a challenge due to the imbalance between class distribu-
tions39. Therefore, we choose to report the F-measure, which con-
siders both precision and recall (sensitivity) simultaneously37, as 
specificity and accuracy are always high because the negative region 
is large with respect to the positive class. This choice of using the 
F-measure is particularly important considering the performance 
characteristics of multi-pass segmentation. During testing we 
found that the multi-pass approach trades segmentation sensitivity 
for increased precision, while outperforming full analysis overall, 
with an improved F1 score (Fig. 2). This result is due to a lower 
false-positive rate achieved by multi-pass segmentation as a result 
of the low-resolution network pre-pass, which limits the amount 
of background region seen by the high-resolution network. Overall 
(on four holdout WSIs), our network achieved its best performance 
after the fifth iteration of training using multi-pass segmentation, 
with a sensitivity of 0.92 ± 0.02, specificity of 0.99 ± 0.001, precision 
of 0.93 ± 0.14 and accuracy of 0.99 ± 0.001.

Network performance analysis is further complicated by human 
annotation errors. We note several instances where network pre-
dictions outperformed human annotators, despite being trained 
using flawed annotations. This phenomenon is highlighted in Fig. 
3, where glomerular regions annotated manually in iteration 0 are 
compared to the iteration 5 network predictions. Such errors are 
more prevalent in WSIs annotated in early iterations, where net-
work predictions need the most correction.

To qualitatively prove the effectiveness and extendibility of our 
method, we show its extension to multi-class detection by segment-
ing glomerular nuclei types40,41 and interstitial fibrosis and tubular 
atrophy (IFTA)42,43, as well as by differentiating sclerotic and non-
sclerotic glomeruli44. This analysis is performed in mouse kidney 
and human renal biopsies. Figure 4 shows the glomeruli detection 
network from Fig. 2 adapted for nuclei detection. This study was 
carried out by retraining the high-resolution network using a set 
of 143 glomeruli with labelled podocyte and non-podocyte nuclei, 
marked via immunofluorescence labelling. For this analysis, the 

Initial annotation (1–3 WSIs)

WSI down-sampling and chopping

Network training X epochs

WSI block augmentation

Hand correction of AI

AI prediction

Until convergence Ideal performance

Fig. 1 | Iterative H-AI-L pipeline overview. Schematic representation of 
the H-AI-L pipeline for training semantic segmentation of WSIs. Several 
rounds of training are performed using human expert feedback to optimize 
ideal performance, resulting in improved efficiency in network training with 
limited numbers of initial annotated WSIs.

Table 1 | H-AI-L segmentation mouse WSI training and testing 
datasets

H-AI-L dataset

Annotation iteration 0 1 2 3 4 Test

WSIs added 1 2 4 6 4 4

Total glomeruli Normal 32 84 86 418 0 138

STZ 0 0 0 0 293 96

Mouse WSI training set used to train the glomerular segmentation network. Data presenting 
structural damage from STZ-induced diabetes1 were introduced in iteration 4. The test dataset 
included three normal and one STZ-induced murine renal WSI.
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low-resolution network from Fig. 2 was kept unchanged to identify 
the glomerular regions in the mouse WSI.

Due to the non-sparse nature of IFTA regions in some human 
WSIs, we forgo our multi-pass approach to generate the results 
shown in Fig. 5. The development of this IFTA network has been 
limited due to the biological expertise required to produce these 
multi-class annotations. However, preliminary segmentation results 
on holdout WSIs are promising, even though only 15 annotated 
biopsies were used for training (Fig. 5). We note that this is a small 
training set, as human biopsy WSIs contain much less tissue area 
than the mouse kidney sections used to train the glomerular seg-
mentation network above.

Finally, to show the adaptability of the H-AI-L pipeline to other 
medical imaging modalities, we quantify the use of our approach 
for the segmentation of human prostate glands from T2 MRI data. 
These data were oriented and normalized as described in ref. 45 and 
saved as a series of TIFF image files. These images can be opened 
in ImageScope and are compatible with our H-AI-L pipeline. 
This analysis was completed using a training set of data from 39 
patients, with an average of 32 slices per patient (512 × 512 pixels) 
(Fig. 6d); 509 of the total 1,235 slices contained prostate regions of 
interest. Iterative training was completed by adding data from four 
new patients to the training set before each iteration. Data from 

the remaining seven patients were used as a holdout testing set (a 
full breakdown is available in Supplementary Table 1). The newly 
annotated/corrected training data were augmented ten times, and a 
full-resolution network was trained for two epochs during each iter-
ation: the results of this training are presented in Fig. 6. While the 
network performs well after just one round of training, the perfor-
mance on holdout patient data continues to improve with the addi-
tion of training data (Fig. 6a), achieving a sensitivity of 0.88 ± 0.04, 
specificity of 0.99 ± 0.001, precision of 0.9 ± 0.03 and accuracy of 
0.99 ± 0.001. This trend is also loosely reflected in the network pre-
diction on newly added training data, where an upward trend in 
prediction performance is observed in Fig. 6b. Notably, when our 
iterative training pipeline is applied to this dataset, annotation is 
reduced by approximately 90% percent after the second iteration; 
only 10% of the MRI slices containing prostate fall below our seg-
mentation performance threshold (Fig. 6c). We note that careful 
conversion between the DICOM and TIFF format (considering ori-
entation and colour scaling) is essential for this analysis.

Conclusions
We have developed an intuitive pipeline for segmenting structures 
from WSIs commonly used in pathology, a field where there is 
often a large disconnect between domain experts and engineers.  
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Fig. 2 | H-AI-L pipeline performance analysis for glomerular segmentation on holdout mouse WSIs. a, Average annotation time per glomerulus as a 
function of annotation iteration. The data are averaged per WSI and normalized by the number of glomeruli in each WSI. The 0th iteration was performed 
without pre-existing predicted annotations, whereas subsequent iterations use network predictions as an initial annotation prediction that can be 
corrected by the annotator. b, F1 score of glomerular segmentation of four holdout mouse renal WSIs as a function of training iteration. c, Run times 
for glomerular segmentation prediction on holdout mouse renal WSIs using H-AI-L with multi-pass (two-stage segmentation) versus full-resolution 
segmentation. d, Example of a mouse WSI with segmented glomeruli (×40 , H&E-stained). Network predictions are outlined in green. The error bars 
indicate ±1 standard deviation.
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To bridge this gap, we seek to provide pathologists with robust data 
analytics provided by state-of-the-art neural networks. We have 
developed an intuitive library for the adaptation of DeepLab v225, 
a semantic segmentation network, to WSI data commonly used 
in the field. This library uses annotation tools from the common 
WSI viewing software Aperio ImageScope26 to annotate and display 
network predictions. Training, prediction and validation of the net-
work are performed via a single Python script with a command line 
interface, making data management as simple as dropping data into 
a pre-determined folder structure.

Our iterative, human-in-the-loop training allows considerably 
faster annotation of new WSIs (or similar imaging data), because 
network predictions can easily be corrected in ImageScope before 
incorporation into the training set. With this approach, network 
performance can be qualitatively assessed after each iteration. 
Newly added data act as a holdout validation set, where predictions 
are easily viewed during correction. The theoretical performance 
achievable by this method is bounded by the training set used, and 
is therefore the same as the current state-of-the-art (manual anno-
tation of all training data). However, due to the increased speed of 
annotation and the intuitive visualization of network performance 
(allowing selection of poorly predicted new data after each itera-
tion), H-AI-L training can converge to the upper bound of per-
formance more efficiently than the traditional method. That is, 
H-AI-L achieves state-of-the-art segmentation performance much 
faster than traditional methods, which are limited by data annota-
tion speed (Fig. 7). Our H-AI-L approach offers an ideal viewing 
environment for network predictions on WSIs, using the fast pan 
and zoom functionality provided by ImageScope27, improving the 
accuracy and ease of expert annotation.

The ability to transfer parameters from a trained network 
(repurposing it for a different task) ensures that segmentation of 
tissue structure can be tailored to any clinical or research defini-
tion, including other biomedical imaging modalities. Our two-stage 
segmentation (multi-pass) analysis allows rapid prediction of sparse 
regions from large WSIs, without sacrificing accuracy due to low-
resolution analysis alone. Inspired by the way pathologists scan tis-
sue slides, multi-pass approaches have been successfully described 
in digital pathology for detecting cell nuclei46. We believe that this 
technique offers the perfect compromise between speed and speci-
ficity, producing high-resolution sparse segmentations ideal for dis-
play in ImageScope. Our method provides non-sparse segmentation 
of WSIs by forgoing multi-pass analysis. However, in the future we 
plan to change how the class hierarchy is defined in our algorithm, 
offering easy functionality to search for low-resolution regions with 
high-resolution sub-compartments.

In the future, we will also extensively test our method in a clini-
cal research setting. This testing will evaluate both the segmenta-
tion performance and ergonomic aspects affecting a clinician’s ease 
of use. We will extend our method to provide anomaly detection, 
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Fig. 3 | H-AI-L human annotation errors (mouse data). a–d, Comparison of 
initial manual annotations from iteration 0 (a,c) with their respective final 
network predictions from iteration 5 (b,d). These examples were selected 
due to poor manual annotation, where the glomerulus was not annotated 
(a) or showed poorly drawn boundaries (c). These images are captured at 
×40, and tissue was stained using H&E.

Podocytes

Glomeruli

Other nuclei

Fig. 4 | Multiclass nuclei prediction on a mouse WSI. Several examples of 
multi-class nuclei predictions are visualized on a mouse WSI (×40, PAS-
stained). Here, transfer learning was used to adapt the high-resolution 
network from above (Fig. 2) to segment nuclei classes. This network was 
trained using 143 labelled mouse glomeruli. The low-resolution network 
was kept unchanged for the initial detection of glomeruli. We expect the 
results to significantly improve using more labelled training data.

Sclerotic glomeruli

Glomeruli

IFTA regions

Fig. 5 | Multiclass IFTA prediction on a holdout human renal WSI. 
Segmentation of healthy and sclerotic glomeruli, as well as IFTA regions 
from human renal biopsy WSI (×40, PAS-stained). Due to the non-sparse 
nature of IFTA regions, these predictions were made using only a high-
resolution pass. This is a screenshot of Aperio ImageScope, which we use 
to interactively visualize the network predictions.
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Fig. 6 | H-AI-L method performance analysis for human prostate segmentation from T2 MRI slices. a, Segmentation performance as a function of 
training iteration, evaluated on 7 patient holdout MRI images (224 slices). Performance was evaluated on a patient basis. We note that despite the 
decline in network precision after iteration 6, the F1 score improves as a result of increasing sensitivity. b, The prediction performance on added training 
data, before network training. This figure shows the prediction performance on newly added data with respect to the expert-corrected annotation, and is 
evaluated on a patient basis (data from four new patients were added at the beginning of each training iteration). c, The percentage of prostate regions 
where network prediction performance (F1 score) fell below an acceptable threshold (percentage of slices that needed expert correction) as a function of 
training iteration. We define acceptable performance as F1 score > 0.88. Using this criterion, expert annotation of new data is reduced by 92% by the fifth 
iteration. d, A randomly selected example of a T2 MRI slice with segmented prostate; the network predictions are outlined in green. The error bars indicate 
±1 standard deviation. A detailed breakdown of the training and validation datasets is available in Supplementary Table 1.
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Fig. 7 | Annotation time-savings using the H-AI-L method while comparing to baseline segmentation speed. H-AI-L plots showing the annotation time 
per region normalized with respect to the baseline annotation speed of each annotator for the result shown in Fig. 2a. An exponential decay distribution 
(H-AI-L curve) is fitted to each annotator, where the H-AI-L factor is the exponential time constant: a derivation can be found in the Methods. The 
vertical lines are gaps between iterations (where the network was trained). The area under the H-AI-L curve represents the normalized annotation time 
per annotator. This can be compared to the area of the normalized baseline region, which represents the normalized annotation time without the H-AI-L 
method. a, The time-savings by annotator 1 (calculated to be 81.3%) when creating the training set used to train the glomerular segmentation network in 
Fig. 2. b, Annotator 2 was 82.0% faster. c, Annotator 3 was 72.7% faster. While the y axis in these plots is not a direct measure of network performance, 
it is highly correlated. The spike in annotation time seen at 600 regions is data from a WSI with severe glomerular damage from diabetic nephropathy. 
Future work will involve deriving optimal iterative training strategies based on information mined via such plots, with a goal of reducing annotation burdens 
for expert annotators.
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defining a confidence metric and threshold where WSIs are flagged 
for further evaluation. Further, to minimize the expert’s time, we 
will create an algorithm to predict the optimal amount of annota-
tion performed in each iteration, using a curve fitting similar to 
Fig. 7. We will also adapt our method for native use with a DICOM 
viewer and a three-dimensional CNN for segmentation, allow-
ing easier workflows for segmentation of radiology datasets, and 
mitigating the issues of data orientation and gamut mapping when 
converting to 8-bit TIFF images. Given these tools, we foresee a 
segmentation approach similar to our H-AI-L method under-
pinning efforts to build searchable medical image databases for 
research and education.

Methods
All animal tissue sections were collected in accordance with protocols approved by 
the Institutional Animal Care and Use Committee at the University at Buffalo, and 
in a manner consistent with federal guidelines and regulations and in accordance 
with recommendations of the American Veterinary Medical Association guidelines 
on euthanasia. Human renal biopsy samples were collected from the Kidney 
Translational Research Center at Washington University School of Medicine, 
directed by S.J., following a protocol approved by the Institutional Review Board 
at the University at Buffalo before commencement. Digital MRI images of human 
prostate glands were provided by P.S.L., following a protocol approved by the 
Institutional Review Board at the Medical College of Wisconsin. All human 
methods were performed in accordance with the relevant federal guidelines and 
regulations. All patients provided written informed consent.

For mouse pathology sample preparation, C57BL/6J background mice were 
euthanized, and their kidneys were perfused, extracted and embedded in paraffin. 
Mice were either treated with STZ to induce diabetic nephropathy or with an STZ 
vehicle for control. The murine WSIs used (Figs. 2 and 3) were sliced from paraffin-
embedded kidney sections at 2 µm, stained with either PAS or H&E, and bright-field 
imaged at 0.25 µm per pixel resolution and ×40 magnification using a whole-slide 
scanner (Aperio Scan Scope, Leica). The sections used for podocyte segmentation 
(Fig. 4) were prepared similarly: stained first using immunofluorescence labels 
targeting WT1 (to generate training labels for podocyte detection), and then 
imaged via a whole-slide fluorescence scanner at 0.16 µm per pixel resolution and 
×40magnification (Aperio Versa, Leica). These tissue sections were then post-stained 
using PAS, and bright-field imaged as described above. The human pathology WSIs 
used (Fig. 5) were obtained from 2–5-µm-thick biopsy sections, stained with PAS 
and bright-field imaged in a manner similar to that discussed above.

For digital MRI images of human prostate glands, 39 patients were recruited for 
an MRI scan befre a radical prostatectomy, using a 3T GE scanner (GE Healthcare) 
and an endorectal coil. The MRI included an axial T2-weighted image, collected 
with 3 mm slice thickness, 0.234 × 0.234 mm2 voxel resolution, and a 4,750/123 ms 
TR/TE. The DICOM files were converted to NIFTI format using the mri_convert 
command from the Freesurfer library of tools (surfer.nmr.mgh.harvard.edu). 
Prostate masks were then manually annotated using AFNI by P.S.L. and verified 
by a board-certified radiologist for an unrelated study47. The prostate images and 
annotations were then converted into TIFF format using MATLAB (Mathworks 
Inc) for analysis by the SUNY Buffalo team.

In the H-AI-L pipeline, an annotator labels a limited number of WSIs using 
annotation tools in ImageScope26, which provides the input for network training. 
The resulting trained network is then used to predict the annotations on new 
WSIs. These predictions are used as rough annotations, which are corrected by the 
annotator and sent back for incorporation into the training set; improving network 
performance and optimizing the amount of expert annotation time required. 
As this technique makes the adaptation of network parameters to new data easy, 
adapting a trained network to new data generated in different institutions is 
extremely feasible.

At the heart of H-AI-L is the conversion between mask and XML48 formats, 
which are used by DeepLab v225 and ImageScope26, respectively. Training any 
semantic segmentation architecture relies on pixel-wise image annotations that 
are input to the network for training and output after network predictions as 
mask images. In the case of DeepLab, the mask images take the form of indexed 
greyscale 8-bit PNG files, where each unique value pertains to an image class. On 
the other hand, annotations performed in ImageScope are saved in text format, as 
XML files48, where each region is saved as a series of boundary points or vertices. 
Determining the vertices of a mask image is a common image processing task, 
known as image contour detection49,50. As opposed to edge detection, contour 
detection can have hierarchal classifications50, lending itself ideally to conversion 
into the hierarchal XML format used by ImageScope.

To facilitate the transfer between ImageScope XML and greyscale mask 
images, we use the OpenCV-Python library (cv2)49, specifically the function cv2.
findContours to convert from masks to contours. Using this function, we are 
able to automatically convert DeepLab predictions to XML format, which can be 
viewed in ImageScope, and thus easily evaluate and correct network performance. 

Furthermore, we have written a library for converting an XML file into mask 
regions, using cv2.fillPoly. This library follows the OpenSlide-Python51 conventions 
for reading WSI regions, returning a specified mask region from the WSI.

Using OpenSlide51 and our XML to mask libraries allows for efficient chopping 
of WSIs into overlapping blocks for network training and prediction; similar 
sliding-window approaches are common in predicting semantic segmentations 
on large medical images52,53. To simplify the iterative training process, and 
complement the easy annotation pipeline proposed, we have created a callable 
function that handles operations automatically, prompting the user to initiate 
the next step. This function needs two flags [--option] and [--project], which are 
the parameters identifying the iterative step and the project to train, respectively. 
Initially created using [--option] ‘new’, a new project is trained iteratively by 
alternating the [--option] flag between ‘train’ and ‘test’.

Multi-pass approach. Our algorithm uses our multi-pass approach by default. This 
approach is inspired by the way that pathologists scan WSIs at progressively higher 
resolutions. This process is accomplished by training two DeepLab segmentation 
networks using image regions and masks cropped from the training set. A high-
resolution and a separate low-resolution network are respectively trained with full-
resolution and down-sampled cropped regions. Prediction using this approach is 
performed serially; the low-resolution network identifies WSI regions to be passed 
to the high-resolution network for further refinement. This method is outlined in 
Supplementary Fig. 1.

Full-resolution analysis alone is achievable by setting the [--one_network] 
flag to ‘True’ during training and prediction. This analysis trains only the high-
resolution network, which is exclusively used to segment WSIs during prediction. 
More information on the training and prediction is explained below.

Training. To streamline the training process, we created a pipeline where a user 
places new WSIs and XML annotations in a project folder structure, and then 
calls a function to train the project. This automatically initiates data chopping and 
augmentation, and then loads parameters from the most recently trained network 
(if available) before starting to train. For faster convergence, we utilize transfer 
learning, automatically pulling a pre-trained network file whenever a new project is 
created, which is used to initialize the network parameters before training. We have 
also included functionality to specify a pre-trained file from an existing project 
using the [--transfer] flag. For ease of use, the network hyper-parameters can be 
changed using command line flags, but are set automatically by default.

When [--option] ‘train’ is specified, WSIs and XML annotations are chopped 
into a training set containing 500 × 500 blocks with 50% overlap. This training set 
is then augmented via random flipping, hue and lightness shifts, and piecewise 
affine transformations, all accomplished using the imgaug Python library54. To 
keep the network unbiased, the total number of blocks containing each class is 
tabulated and used to augment less frequent classes with a higher probability55. 
Our multi-pass approach performs these steps for both high- and low-resolution 
patches separately to generate two training sets. The 500 × 500 low-resolution 
patches cover a greater receptive field, emphasizing information that occurs in the 
lower spatial image frequencies.

Once the training data have been assembled, the networks are trained for 
the specified number of epochs. The user is then prompted to upload new WSIs 
and run the [--option] ‘predict’ flag. This produces XML predictions that can be 
corrected using ImageScope before incorporation into the training set.

Multi-pass prediction. Due to the sparse nature of the structures we attempt 
to segment from renal WSIs, we limit the search space, using a low-resolution 
pass to determine hotspot regions before segmentation at full resolution. In this 
multi-pass approach, thresholding and morphological processing first determine 
which WSI blocks contain tissue, eliminating background regions. Second, down-
sampled blocks (1/16th resolution, 500 × 500 pixels with 50% overlap) are extracted 
and tested, using the low-resolution segmentation network to roughly segment 
structures. The output predictions of the preprocessing steps are then stitched back 
into a hotspot map, which is 1/16th the WSI size. For multi-class cases, this stitching 
can be performed by finding the maximum class number between overlapping 
prediction maps, which is assigned to each pixel in the hotspot map. In this way, 
multi-class hierarchies are defined by assigning subclasses to higher mask indices. 
For example, conducting the stitching for the nuclear segmentation in Fig. 4  
requires the definition of background, glomeruli, nuclei and podocyte classes 
to be 0, 1, 2 and 3, respectively, where nuclei and podocytes are compartments 
of glomeruli. The result in Fig. 5 was obtained using a similar procedure. This 
stitching operation is outlined in Supplementary Fig. 2 for two classes. The results 
in Figs. 2, 3 and 6 were obtained using a similar two-class stitching operation.

The hotspot map is then used to determine the locations for performing pixel-
wise segmentation using the high-resolution DeepLab network (trained using full-
resolution image patches). Hotspot indices are calculated, scaled back to full resolution 
(×16), and used to extract these regions at full resolution. The XML annotation file is 
then assembled from the high-resolution predictions on these regions.

Full-resolution prediction. When the [--one_network] flag is set to ‘True’, the 
initial extraction of overlapping blocks is performed at full resolution. Prediction 
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on these blocks uses the high-resolution DeepLab network, and the resulting 
hotspot map is stitched using the same method as above. Unlike above, this 
map (which is the same size as the WSI) is used to directly assemble the XML 
annotation file.

Post prediction processing. To limit possible false-positive predictions of small 
regions, we implemented a size threshold that tests the area of each predicted 
region, eliminating regions smaller than the set threshold using morphological 
operations. This threshold can be adjusted via the [--min_size] flag, and is easily 
estimated using the area displayed in the Annotations tab in ImageScope to 
determine the minimum regions size. By default, this threshold is set to 625 pixels, 
which was used for the analysis in this paper.

Validation. While the performance of the network is easily visualized 
after prediction on new WSIs, we have included functionality for explicitly 
evaluating performance metrics and prediction time on a holdout dataset. This 
is accomplished using the [--option] ‘validate’ flag. When called, it evaluates 
the network performance on holdout images for every annotation iteration by 
automatically pulling the latest models. To perform this performance comparison, 
ground-truth XML annotations of the holdout set are required to calculate the 
sensitivity, specificity, accuracy and precision performance metrics38.

Estimating H-AI-L performance (Fig. 7). To quantify the time-savings of our H-AI-L 
method, we plot the normalized annotation time per region versus the number of 
regions annotated. Here we define the normalized annotation time per region A as

=A ,t
t0

 where t is the annotation time per region (averaged per WSI) and t0 is 
the average annotation time per region in iteration 0. A is bounded from [0,1], 
where 1 is the normalized time required to annotate one region fully. Although the 
annotation time is reduced as a piecewise function of the training iteration, in Fig. 7  
we use a continuous exponential decay distribution to approximate A(r):

= −τA r( ) e ,
r

 where r is the number of regions annotated and τ is the exponential 
time constant, which we call the H-AI-L factor.

The normalized annotation time of our H-AI-L method (H) can therefore be 
estimated as

∫ τ= = − τ
−

H A r r( )d [1 e ]
R

R

0

where R is the total number of regions annotated. Likewise, the normalized 
baseline annotation time (B) can be calculated as

∫= =B r R1d
R

0

Therefore, the time-savings performance (P) of our H-AI-L method can be 
estimated as a percentage:
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The H-AI-L factor τ reflects the effectiveness of iterative network training, 
where lower values of τ represent training curves that decay faster. In the future, 
algorithms to select the optimal amount of annotation and identify data outliers to 
be annotated at each iteration will improve the performance of the H-AI-L method 
by reducing τ.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have made the data used for analysing the performance of H-AI-L method 
available at https://goo.gl/cFVxjn. The folder contains a detailed note describing 
the data. Namely, the folder contains pathology and radiology image data 
used for training and testing our H-AI-L method, ground-truth and predicted 
segmentations of the test image data, network corections and respective 
annotations of the training image data for different iterations, and the network 
models trained at different iterations. We have made our code openly available 
online at https://github.com/SarderLab/H-AI-L.
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