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ABSTRACT 

The incorporation of automated computational tools has a great amount of potential to positively influence the field of 
pathology. However, pathologists and regulatory agencies are reluctant to trust the output of complex models such as 
Convolutional Neural Networks (CNNs) due to their usual implementation as black-box tools. Increasing the 
interpretability of quantitative analyses is a critical line of research in order to increase the adoption of modern Machine 
Learning (ML) pipelines in clinical environments. Towards that goal, we present HistoLens, a Graphical User Interface 
(GUI) designed to facilitate quantitative assessments of datasets of annotated histological compartments. Additionally, we 
introduce the use of hand-engineered feature visualizations to highlight regions within each structure that contribute to 
particular feature values. These feature visualizations can then be paired with feature hierarchy determinations in order to 
view which regions within an image are significant to a particular sub-group within the dataset. As a use case, we analyzed 
a dataset of old and young mouse kidney sections with glomeruli annotated. We highlight some of the functional 
components within HistoLens that allow non-computational experts to efficiently navigate a new dataset as well as 
allowing for easier transition to downstream computational analyses.  

 

1. INTRODUCTION 

Artificial Intelligence (AI) and Machine Learning (ML) have proven themselves to be powerful tools in a wide variety of 
applications. Their utility is especially pronounced in scenarios where there is a vast amount of heterogeneous data that is 
difficult for classical models to replicate. High-complexity models such as Convolutional Neural Networks (CNNs) have 
demonstrated impressive performance in tasks ranging from image classification to sequence modeling. In the growing 
field of digital pathology, researchers have even developed fully-automated models that rival human pathologists in their 
speed and performance [1-3]. Despite these improvements, these models have been slow to incorporate into clinical 
environments. One explanation for the reluctance of pathologists and regulatory agencies to adopt AI-based technologies 
is the lack of interpretability that inhibits the ability of medical professionals to understand what the decision of the model 
is based on. Without justification for their decisions, how can doctors be expected to trust a model to assign diagnoses and 
treatments to their patients? 

The lack of transparency in most modern CNNs has been proven to be vulnerable to biased training data as well as 
imperceptible noise that can negatively influence the capability of image filters to recognize key diagnostic criteria [4-6]. 
Without the development of post-hoc methods, such as Grad-CAM, the task of diagnosing biased networks would be nearly 
impossible [7]. Using Grad-CAM, computational researchers are able to trace the classification decisions made by a 
network back through the convolutional filters of a CNN in order to highlight regions in the input images that are most 
influential. While this provides valuable insight into what a given network is learning to detect, it does not provide 
additional information about that area in terms of why it is informative for a particular classification. Learning quantitative 
distinctions between healthy and diseased samples are where traditional methods involving the extraction of hand-
engineered features excel. Hand-engineered features include measures of shape, color, and texture of specific components 
within a given image. Compared to features that are extracted via a ML model, hand-engineered features require more 
effort to design and calculate because they have an additional segmentation step. The use of immunohistochemical staining 
can greatly reduce the difficulty to segment specific cells and tissues in histology images. Designing models that use these 
features in order to render classification decisions allows for the interpretation of results for both pathologists and 
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computational experts as well as helping to formulate biological hypotheses that examine the influence of specific cells 
and morphological changes [8-10].   

The explanation of individual hand-engineered features may be relatively simple, however, physiological changes that are 
the result of disease are rarely the result of single features. Interpreting the influences of combinations of hand-engineered 
features on diagnostic decisions can be performed via linear models or logistic regression, but that is not translatable to 
how a pathologist makes observations in images.  To address this shortcoming and increase the utility of quantitative 
analyses in digital pathology, we developed HistoLens. Through the many features provided in HistoLens tailored to usage 
on Whole Slide Images (WSIs), pathologists are provided with novel ways to visualize their data, determine the impact of 
specific compartments on classification decisions, and integrate their prior knowledge into downstream analyses to better 
inform ML experiments. The following sections in this paper will illustrate the usage of HistoLens using glomeruli 
annotated in mouse WSIs stained with Periodic Acid Schiff (PAS). 

2. METHODS 

File Inputs: Upon opening the original HistoLens interface, the only button that is enabled is the “File Inputs” button. 
Pressing this button opens the File Input window from which the user can select the kind of experiment to start. In the 
upper button group, the user can select whether they are starting from a directory with pre-extracted images, WSIs and 
annotation files, or a HistoLens Experiment File. Selecting WSIs and annotation files and then selecting the directory 
containing WSIs and XML annotation files, generated after annotating structures in Aperio Imagescope, will take the user 
to the interactive compartment segmentation window. A HistoLens Experiment File is generated after an experiment is run 
and contains file paths to all required components. 

Interactive Compartment Segmentation: The task of segmentation can be a highly computationally intensive task. 
However, constraining the task according to some assumptions about the contents of histology WSIs allows for the 
simplification of the procedure using a small set of parameters per sub-compartment. The user can select whether they 
want to use colorspace transforms, color deconvolution, or a custom segmentation script [11] (Fig. 1). After that, users 
only have to select a channel from the transformed image and then modify the parameters controlling threshold level, 
minimum size, and segmentation hierarchy level. Segmentation hierarchy controls the order of segmentation from 
available pixels in a given structure. A segmentation hierarchy level of one means that this compartment is segmented first 
from all available regions in the structure boundaries. The second level is segmented from all pixels except those in the 
first segmentation hierarchy. The last level contains all of the remaining pixels. After selecting the combination of 
parameters that gets the best segmentation, the user can check the performance on other images and then click the “Done” 
button to proceed to feature extraction. 
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Figure 1: Interactive Compartment Segmentation Window: Window that enables users to manually select their own 
simplified segmentation parameters to capture relevant biological sub-compartments. HistoLens also writes a callable 
Matlab script that can perform the same segmentation procedure on unseen images outside of HistoLens. 

 

Hand-Engineered Feature Set: The feature visualizations that are introduced in this work are based on a large set of 315 
glomerular image features quantifying color, shape, texture, and relative size of sub-compartments including nuclei, 
luminal spaces, and PAS+ (mesangial) areas designed by Ginley et al [12, 13]. An additional set of 19 glomerular boundary 
morphology and nuclear distribution features are also included along with their associated visualizations. Nuclear 
distribution features include graph-based measures derived from Minimum Spanning Trees (MSTs) and Voronoi Diagrams 
where the centroids of segmented nuclei serve as nodes [14, 15]. During feature extraction, HistoLens iterates through each 
slide and calculates feature values for each structure in parallel. In-window progress bar and table show progress and once 
all slides in the slide folder are completed the user is given the option to calculate feature ranks according to provided 
labels. 

Feature Ranking: After features are extracted for the images, the users are then given the option to perform feature ranking 
according to feature importance in a classification task. Feature ranking is performed using the combined outputs of several 
feature selection algorithms, Minimum Redundancy Maximum Relevance (MRMR), Chi-Square tests, and ReliefF (Fig. 2). 
These algorithms were selected because they consider both the individual and combined influence of each of the hand-
engineered features on slide-level classification. Handling of labels in HistoLens is flexible depending on user preference. 
This can include single or multiple slide-level labels or structure-level labels for more specific sub-classifications. The 
output of each of these algorithms are summed together so that the most informative features for each type of classification 
have the lowest combined rank sum. 

Generation of Feature Visualizations: Feature visualizations generated in HistoLens can be separated into four separate 
groups depending on properties of the specific feature being visualized. Similarity maps are binary masks identifying pixels 
within the glomerular boundary that have a value within a user-defined range of the feature value describing the entire 
image. For example, the similarity map of the feature “Luminal Mean Blue Value” would contain a binary mask with all 
pixels within the luminal space of the glomerulus where the blue intensity is within a user-defined percentage (default of 
10%) of the mean blue intensity for all pixels in the luminal space. The remaining pixels outside of this range would appear 
as black (zero grayscale intensity). Deviation masks, contrastingly, assign different weights to pixels according to how 
different they are from feature value for the entire image. These include any features that measure the standard deviation 
of a particular characteristic within a compartment. Pixels within these compartments undergo a folded normal 
transformation wherein the absolute value of the Gaussian transformed pixel intensity replaces each pixel’s original RGB 
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intensity. The resulting visualization equally weights pixels that are equally different from the value for the entire image. 
Object specific maps, unlike the previous two types of maps, do not capture individual pixels but instead are meant to 
visualize the characteristics of connected objects within a compartment. These can include individual nuclei, continuous 
regions of mesangium, or distinct luminal spaces such as capillary lumens and Bowman’s space. For these object specific 
maps, inclusion of an object in the final visualization can be based on similarity criteria, where a binary mask would 
include all objects that have feature values similar to the total image feature, or deviation criteria, where all of the pixels 
included with an object are weighted according to their deviation from the total image feature. Region specific maps, 
similarly to object specific maps also work with groups of pixels, however, they are used for visualizing texture features 
and are therefore not specific to connected objects. A 10x10 sliding window is progressed over an image and the Gray 
Level Co-occurrence Matrices (GLCMs) are used to calculate the correlation, contrast, energy, and homogeneity within 
that windows area. Regions that are with a user-defined similarity range are included in the final binary mask for a given 
texture feature. 

 
Figure 2: Feature Ranking and Combining Feature Visualizations: Procedure for generating combined hand-
engineered feature visualizations to provide visual context to a set of quantitative image features. Using these 
visualizations, it is possible to ask far-reaching questions about the quantifiable definitions of certain conditions. 

 

3. RESULTS 

In the figures below, a use case of HistoLens is presented. For this particular case, the user is interested in comparing 
distinctive glomerular characteristics between Old and Young mice. Initially, the feature that is selected for visualization 
and plotting is the total glomerular area (Fig. 3). The user can then change what feature they want to look at by selecting 
the compartment of interest, the type of feature, and then the specific name of the feature they want to see followed by the 
“View Specific” button. To view more general categories of features, such as all color properties of Mesangium or all 
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Luminal Space features, the user can select either the “View Compartment Feature” or the “View Feature Types” with 
their desired compartment and feature type selected. Combining feature visualizations from multiple different categories 
is facilitated through the “Custom List” list box that enables the user to hand-select features from all 334 provided.  To 
view the feature visualizations ranked according to each features importance in a classification task, the user can select 
whichever one of the original label categories provided in the feature ranking window they would like to view. The 
resulting combined visualization uses feature visualizations weighted according to their relative importance in assigning 
that image to the selected label category and mapped to the Jet colorspace to improve visual contrast. Viewing the image 
like this allows the user to ask the question, what areas in this image would suggest that this particular structure comes 
from this group of patients? To further refine the feature visualization process when viewing large combinations of features, 
the user can move the rectangular Region of Interest (ROI) over a specific area in the image and see which feature 
visualizations are present in that area and to what magnitude. In this way not only does HistoLens show what areas in an 
image are informative for a given classification, but it also is able to describe what about those regions is informative in 
terms of quantitative features. 

 
Figure 3: Initial HistoLens Window: (A) Notepad for recording specific observations during analysis. (B) Table 
containing information from File Input window. (C) Main visualization tools including the main image window, sliders 
for adjusting heatmap transparency and minimum feature rank, feature rankings drop down menu for selecting label 
category, and similarity threshold for controlling pixel inclusion in similarity maps. The Persistent Image Labels, list box 
allows the user to add a clickable label in the feature distribution plot that allows the user to see the relative position of 
that image throughout analyses and to readily view that image again. (D) Toolbox containing various interactive plots, 
tables, and figures within which the user can view relative distributions between classes, subset data on the fly, combine 
categorical class labels or add a two class cut-off for quantitative labels, view preliminary feature statistics, and make 
annotations that can be used in downstream computational analyses. (E) List boxes used for selecting which feature is 
plotted in the Feature Distribution Plot and visualized in the main window. User can select from a list of compartments, 
feature types, and specific feature names in order to increase or decrease the generality of feature visualizations. Users also 
have the option to combine features from different categories that they believe are significant in the Custom List box. 

 

Also included in HistoLens is the ability to select representative samples based on feature values for direct comparison. In 
Figure 4, we select the Mesangial Color features and click the “View Feature Types” button in order to plot the first and 
second Principle Components (PC1 and PC2) in the Feature Distribution Plot. Using the Select Regions tool allows the 
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user to select specific areas in the plot from which to draw samples for side-by-side comparison. At this point, the user can 
then use the provided notepads to record specific observations in each image or they can copy a single note to all of the 
images within a specified region. In addition to written notes, the user can also make manual annotations of specific regions 
of interest within one or both images in the Add Annotations tab (Fig. 5). This human-derived information can then be 
used later on in more complex computational studies to detect, segment, or otherwise characterize etiologic structures.  

 

 
Figure 4: Selecting comparison images: Selecting two regions from the scatter plot of mesangial color features. Image 
(A) is from the Red ROI labeled, “FeatureRange” and image (B) is from the blue ROI labeled “ComparisonRange.” 
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Figure 5: Annotation in HistoLens: (A) Adjusting the heatmap transparency of the same images in Fig. 3. (B) Annotation 
tab in the tools tab group where the user is able to define their own labels and keep track of how many images have been 
labeled for each class. 

4. CONCLUSIONS 

HistoLens represents a crucial step in the development of explainable AI systems in digital pathology. Through HistoLens, 
we are able to use hand-engineered quantitative descriptors of structures extracted from histology WSIs in order to refine 
the search for biologically relevant abnormalities. The hand-engineered feature visualizations presented in this work not 
only serve to provide context for a given feature, they also establish an entirely new way to interpret the results of ML-
based studies. Similar to how a human observer would justify their own observations, in HistoLens the user is provided 
not only with the image regions that would lead a classifier to make a particular decision but also a detailed description of 
what characteristics of those regions are driving that decision.   

Currently, our lab is working to develop tools that engage pathologists in a cooperative and not competitive manner through 
the use of explainable ML pipelines.  We will be expanding the generalizability of HistoLens to include multi-compartment 
studies as well as integrating deep learning networks to model complex biological hypotheses. 
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