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ABSTRACT 

It is commonly known that diverse datasets of WSIs are beneficial when training convolutional neural 
networks, however sharing medical data between institutions is often hindered by regulatory concerns. 
We have developed a cloud-based tool for federated WSI segmentation, allowing collaboration 
between institutions without the need to directly share data. To show the feasibility of federated 
learning on pathology data in the real world, We demonstrate this tool by segmenting IFTA from three 
institutions and show that keeping the three datasets separate does not hinder segmentation 
performance. This pipeline is deployed in the cloud for easy access for data viewing and annotation 
by each site’s respective constituents. 
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I. INTRODUCTION 

As the practice of digitizing histological slides has become common practice1, the field of 
computational pathology has exploded. Modern image analysis technologies (such as deep learning2) 
are increasingly being applied to examine digitized whole slide images (WSIs). Training these 
networks is enhanced by access to diverse WSI datasets, as greater data variability is known to enhance 
model robustness3. For histological tissue, the institution where data is prepared often has a large effect 
on the quality and appearance of the tissue4. Practically this means gathering training data from 
multiple institutions. However sharing medical data across institutions can be complicated by 
regulatory challenges5, limiting the scope of collaboration and therefore the generalizability of 
computational pathology tools.  

Federated learning was recently proposed as an efficient solution for decentralized training of models 
without sharing data6,7. At the core of federated learning is federated averaging (FedAvg)8, which is 
simply a weighted average of the network weights across training sites, performed at pre-selected 
intervals. FedAvg has been practically shown to achieve convergence in a reasonable amount of time 
with proper hyperparameter tuning9. Computational pathology datasets are a perfect candidate for 
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federated learning where both file sizes of WSIs (gigapixels) and regulatory limitations hinder data 
sharing.  

 

II. RESULTS 
To show the feasibility of federated learning on pathology data in the real world, we have created a 
pipeline for federated segmentation on WSIs capable of deployment across multiple institutions. This 
pipeline is deployed in the cloud for easy access for data viewing and annotation by each site’s 
respective constituents.  

To test this system we designed an experiment for federated segmentation of interstitial fibrosis and 
tubular atrophy (IFTA) from renal biopsies. Three pathologists from different institutions provided 
20, 48, and 22 PAS stained slides respectively. A holdout dataset was randomly selected by pooling 
1/3rd of the slides from each institution (29 slides total). We trained 5 models using this dataset: The 
first model was trained across three federated servers, split by institution of origin. For a baseline 
performance, a second model was trained centrally using traditional gradient decent by pooling all the 
training data on a single server. Finally, to compare the performance in a data restricted setting, three 
additional models were trained using data from a single institution alone.  

We note that IFTA boundaries are poorly defined, and subject to disagreement between pathologists10, 
receiver operating characteristic (ROC) curves were used to better capture the performance 
characteristics of our trained models. These were generated by applying a varying threshold to the 
network logits for the prediction of IFTA regions. To measure performance, we calculate the area 
under the curve (AUC) which is a common metric for measuring performance when a ROC curve is 
available.   

Testing these models on the holdout set, we observed that central training and federated training of 
the IFTA model performed similarly both with AUC = 0.95. Performance fell when testing the models 
trained using a single institutions data, giving AUC = 0.92, 0.87, & 0.91 respectively. ROC plots of 
the performance of the five models is highlighted in Fig. 2a. An example of IFTA segmentation on a 
holdout slide using the federated model is shown in Fig. 2c. Here we use the network logits to display 
the predictions as a probabilistic heatmap which we believe is better for the display of structures with 
poorly defined boundaries such as IFTA. 

A fourth pathologist from a different institution provided an additional 17 slides to be used as an 
independent testing dataset. When we applied the trained IFTA models to this independent set we 
observed a similar trend as the holdout set. Here the federated model performed best with AUC = 0.90 
and the central model also performed well with AUC = 0.88. Like the holdout set, performance of the 
models trained on a single institution was lower than federated or central models, with AUC = 0.85, 
0.81, & 0.84 respectively. ROC plots of the performance of the five models is highlighted in Fig. 2b. 

III. METHODS 
This work is heavily based upon our previously published Histo-Cloud tool11, where we modified the 
DeepLab V3+ architecture12 to work natively on WSIs and developed a series of plugins for running 
segmentation training and prediction in the cloud. This work was based on the Digital Slide Archive 
(DSA)13 an open source slide viewer and repository developed by Kitware Inc. 
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Server coordination: In this pipeline, each site / institution has a worker node server with the DSA 
installed where training data is uploaded and annotated. A central (master) server manages the training 
cycle, uploading the global model parameters to each worker via the DSA REST API before requesting 
each run local training, an example schematic of this setup is depicted in Fig. 1. Training Jobs are 
submitted to each worker (training site) using the Histo-Cloud training plugin11. The training job 
scheduling is handled by the DSA internally using slicer_cli_web, which uses Celery14 for task queue 
management, and RabbitMQ15 as a message broker. The job status is monitored by the master server 
until completion. Upon job completion the master server requests and downloads the resultant saved 
local model parameters from each worker node. These parameters are averaged by the master server 
and the global model is updated accordingly. The next round of training is then initiated: the global 
model is uploaded to each worker and is trained further before being downloaded and averaged. If 
training fails on one of the participating workers, then it is excluded from the rest of the training round, 
but participates in future training rounds. 

 
Fig. 1. Federated learning schematic. A schematic example of federated learning. Multiple worker nodes store data and 
model parameters locally at the institution of origin. The data stored on these worker nodes is never shared, and the nodes 
perform local training using this data upon the request of the master server. The local models are then shared with the 
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master server who performs parameter averaging, before sending the updated global model back to the worker nodes for 
further local training. This process is repeated iteratively throughout the training process, until model convergence. 
 
Data management: The training WSI data is uploaded to the DSA worker servers, where it was 
annotated by expert pathologists. Training data is placed in a folder created on each worker for easy 
access by the Histo-Cloud training plugin. A separate folder was created for the models produced by 
training and uploaded after federated averaging. The ID of these folders is known by the master server 
so it can submit training jobs specifying the data and models to be used for training. 

Training setup: For training we used three physically distinct Linux servers running Ubuntu 18.04.5 
LTS, with the DSA installed. All computers had 2 GPUs that were produced by the Nvidia corporation 
and included:   

1) Titan X Pascale (12GB VRAM) & GeForce GTX 1080 (8GB VRAM) – batch size 4 
2) GeForce RTX 2080 Ti (11GB VRAM) & GeForce GTX 1080 (8GB VRAM) – batch size 4 
3) 2X Quadro RTX 5000 (16 GB VRAM) – batch size 12  

For training we used both available GPUs on each server and adjusted the batch size for each server 
to accommodate the individual VRAM (GPU memory) capacity of each.  

Training hyperparameters: The goal of federated averaging is to speed up training by removing the 
overhead of frequent communication between training sites. This is done by training locally for 
multiple steps before updating the central model parameters using FedAvg. Practically when 
optimizing the hyperparameters of our training loop, we found that using 1000 training steps between 
FedAvg achieved repeatable convergence. We trained for a total of 40 rounds (40,000 steps), using 
the momentum optimizer16 with an initial learning rate of 7e-3, using polynomial decay with a learning 
power of 0.9 and final learning rate of 0. To achieve stability at the start of training, we set the learning 
rate to 1e-4 for the first 750 steps. Finally, the gradients on the last layers of the network were scaled 
up by a factor of 10 to achieve faster convergence. These layers included the ASPP pooling layers and 
the layers in the decoder as defined by the DeepLab network architecture12. All the models were 
trained using transfer learning with parameters inherited from a model pre-trained on the ImageNet 
dataset.  
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Fig. 2. Federated IFTA segmentation performance. [a] ROC curves showing each models performance on a dataset of 
29 holdout WSIs which were randomly selected from the same data as the training set. We observed that central training 
and federated training of the IFTA model performed similarly both with AUC = 0.95. Performance fell when testing the 
models trained using a single institutions data, giving AUC = 0.92, 0.87, & 0.91 respectively. [b] ROC curves showing 
each models performance on an independent test set of data containing 17 WSIs. This dataset was from an institution 
which did not provide any training data, and was annotated by an independent pathologist. Similar to the holdout set, the 
central and federated models outperformed the models trained on a single institution’s data. Interestingly the federated 
model performed best with AUC = 0.90 and the central model also performed well with AUC = 0.88. The institutions 1, 
2, & 3 had AUC = 0.85, 0.81, & 0.84 respectively. [c] an example of IFTA segmentation using the federated model on a 
slide from the holdout dataset. The prediction of IFTA is shown here using a heatmap, which reflects the network 
confidence in IFTA segmentation.  
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IV. CONCLUSION AND FUTURE WORK 
The work presented in this write-up utilizes our recently developed Histo-Cloud tool11 for 
segmentation of WSIs in the cloud. We leverage Histo-Cloud’s deployment in the cloud to coordinate 
several instances of the tool for federated training of segmentation models on WSIs. Our experiment 
on IFTA segmentation shows that not only does federating training for WSI segmentation converge, 
but the resultant model outperforms training done with a single institutions data. Furthermore, the 
federated model performs on par with a model trained traditionally with multiple datasets gathered at 
a central location. Most importantly, these experiments demonstrate the feasibility of training and 
coordinating federated segmentation models, managing datasets distributed across physically separate 
servers, and training in reasonable time.  
 
This experiment used the Digital Slide Archive (DSA) to handle data ingestion, annotation, and the 
transfer of parameters between federated nodes. During training, pathologists at each institution have 
access to the most current model and can evaluate its performance on any local testing data stored on 
their DSA instance. This could help identify new slides where the model struggles for inclusion in the 
training dataset for future rounds of training. Visualization of the models on testing data is done by 
using Histo-Cloud tool11 to segment the slides. The output of this model can be displayed as a series 
of contours or a heatmap depicting the probability of a structure (as shown in Fig. 2), directly on the 
slide in the HistomicsUI viewer which is internal to the DSA.  
 
In the future we will test this pipeline on more segmentation tests and develop further plugins for 
training models for WSI classification and multi-instance learning.  
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