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ABSTRACT   
Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time 
consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image 
analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable 
to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this 
direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically 
relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy 
optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model 
Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) 
are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of 
segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently 
reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to 
apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed 
only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in 
renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extra-
glomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, 
genomics, and non-biological problems.   

Keywords: Segmentation, Unsupervised, Hamiltonian, Potts Model, Graph Theory, Glomerulus   

1. INTRODUCTION  
Segmentation is crucial in any large-scale data analysis problem. The ability to cluster data into significant classes is 
important in many domains of health science, providing quantitative insight into the fundamental data structure. 
Unsupervised learning techniques are often preferable, as data groups can be learned from data relationships (determined 
from features) with no prior knowledge, meaning that segmentation is determined from the unique data structure without 
any bias from predetermined class labels. This is particularly useful in image segmentation tasks as large training sets are 
not required for segmentation, which can reveal unique communities not immediately apparent. When viewing tissue 
slides, the pathologist relies on the minds inherent separation of the image into distinct regions. The expert’s ability to 
identify and separate hidden biologically relevant compartments and resolutions is why manual segmentation and 
diagnosis is still today’s golden standard. However, generation of expert segmentations specific enough for quantitative 
analysis is extremely time consuming, and a waste of talent. For this reason, glomerular diagnosis has thus far been limited 
to qualitative analysis of glomerular features. Capitalizing on the multi-scale abilities of unsupervised Potts Model 
Hamiltonian[1] based segmentation methods[2, 3], we intend to develop a quantitative computational toolbox to aid expert 
diagnosis. Our algorithm mimics experts’ ability to cluster regions in multiple scales, but examines images on a pixel by 
pixel basis, allowing the discovery of multi-scale biologically relevant clusters, with extractable quantitative features. 
Unsupervised segmentation using a Potts model Hamiltonian is known in the literature to be precise and accurate[4]. 
Previously this method produced good results, but was computationally unobtainable for large images[3, 5]. Previous 
applications took ~72 hr to complete segmentation of RGB images with 256×256 pixels. Our algorithm combines this 
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unsupervised method with well-established supervised machine learning techniques, in an image analysis pipeline, 
requiring only one optional scale parameter for image segmentation. The multi-scale segmentations achieved by our 
method have never before been feasible on the timescale that we can achieve (seconds). Due to the computational speed, 
and advantage of obtaining multi-scale segmentation without parameter tuning, our method provides the opportunity to 
segment diverse scale structures in clinical histopathology images.  

2. METHOD 
At the heart of our method is the Potts Model Hamiltonian[1]. Representing an image using graph theoretic approaches 
(pixels are nodes, and pixel relationships edges), unsupervised segmentation can be achieved by minimizing the resulting 
Hamiltonian, a cost function adopted from theoretical physics used to group electrons by modeling the interactions of their 
spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph, which is iteratively 
improved until convergence. Traditional graph based image segmentation methods include all image pixels as nodes, and 
large images become quickly unmanageable as the number of edges increases with ~pixels2. To increase computational 
efficiency, traditional methods may reduce the number of edges included, or create graphs based on region adjacency[6]; 
leading to inaccurate region dependent segmentation. By only considering unique pixels, our method achieves 
segmentation accurate on the pixel scale with unprecedented speed. By intelligently reducing the included nodes, 
efficiency is optimized while preserving segmentation accuracy.  

 
Figure 1. Demonstration of the multi-scale segmentation pipeline. (A) RGB image of a renal histopathology image. (B) L*a*b* 
color space image[7, 8]. (C) Reduction of three unique image dimensions to one using Cantor pairing[9]. (D) Unique nodes chosen from 
the RGB image shown in (A). (E) Calculation of the edges using Euclidean distance measure. (F) Sparse graph representation of the 
image using unique nodes in (D). (G) Nodes initially given for classification to the Potts model Hamiltonian based multi-scale 
segmentation algorithm[2, 3]. (H) Optimal classes obtained based on Potts model based segmentation. (I) Classification of nodes using 
Potts model, which are used to train a support vector machine (SVM)[10]. (J) Clustered image using the resulting SVM. (K) Segmentation 
output in multi-scale (resolution). (L) Number of classes plotted against scale (resolution). 

Segmentation is achieved by our method in two parts. Firstly, an unsupervised method is used to obtain an initial 
segmentation of a selected set of pixels (Figs. 1A-1H). This segmentation is then used to train a support vector machine 
(SVM)[10], which then applies this segmentation to the full image (Figs. 1I-1J). The initial segmentation is achieved by 
solving an energy optimization problem. This segmentation method uses only one optional scale parameter to tune to 
important structures in varying scale[2, 3]. This parameter effectively scales the algorithm’s focus, zooming in at higher 
scales to segment finer structures. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts 
model Hamiltonian[11], adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled 
as edges) are used to update the energy of the partitioned graph. The iteration step starts with all nodes in the same class, 
and using an iterative strategy, the optimal number of segments are determined, offering lowest Potts model energy of the 
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partitioned graph. Due to the large number of nodes and edges in the graph of a typical tissue histology image, a sparse 
graph is used to improve the computational speed. 

2.1. Dataset definition 

The input for our method is a vectorized three-channel RGB image ( , , )p R G B  (Fig. 1A) of size M×K, given by, 

 ( , , ) | , , {0,1,2, , 255},p R G B R G B∈ ∈    (1) 

where N MK=  is the number of pixels. Our method first converts the image color-space ( , , ) ( , , )p R G B p L a b→  (Fig. 
1B). The L*a*b* color space[7, 8] is designed to be perceptually uniform, mimicking the nonlinear response of the human 
eye. Therefore, perceptual color differences can be estimated using Euclidean distance[12].  

2.2. Preliminary reduction of data using rounding 

We round the data to the nearest 10 first, and obtain ' ' '( , , )L a bp , where 'L , 'a , and 'b are given by,   

 ' 10
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where ⋅    denotes the flooring operation. Using this method, the number of nodes in the resultant graph is reduced by 

~1000 times, while ( , , )p L a b  and ' ' '( , , )L a bp  have structural similarities of ~0.95, giving accurate segmentation, using 
the sparse graph created from Cantor pairing[9] of ' ' '( , , )L a bp , as discussed in Section 2.5.    

2.3. Graph definition 

To perform clustering, the vectorized input data must be represented as a graph (Fig. 1F), where Φ are nodes, and E are 
edges. These metrics are given by, 

 {1,2,..., } | 1,n nΦ = >   (5) 

 {1,2,..., },E e=   (6) 

 ,
2
n

e  
=  
 

  (7) 

where n  is the number  of nodes and e the number of edges. Using an efficient node selection process, the clustering 
speed is optimized. 

2.4. Pixel selection 

In a 3 channel 8-bit image, there are 2563 unique colors, the full image color space therefore has a maximum of 16777216 
unique colors. In a common histological slide, the color space is much reduced, including many repeated colors. By 
representing only unique pixels as nodes, the sample size can be reduced from the original image pixel dimensions. For 
the image with N  pixels as defined in Section 2.1 and using the reduced ' ' '( , , )L a bp  in Section 2.2, we have: 

 ' ' '( , , ) {1,2,..., }.p L a b N=   (8) 

Pixels with unique colors are assigned as nodes Φ, as defined in Eq. (5), where: 

 {1,2,..., }.NΦ ⊆   (9) 
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To find unique pixels, we use a Cantor Pairing function[9] (Fig. 1C) to transform the three-dimensional color-space 
(L*a*b*) into a one-dimensional vector, where unique colors are given arbitrary values, given by: 

 1 2 1 2 1 2 2
1( , ) ( )( 1) ,
2

k k k k k k kπ = + + + +   (10) 

where k1 and k2 are intensity values in two image channels. The above equation is repeated twice to transform each RGB 
color into a unique value ( , , )L a bπ , where: 

 ( ( , , )).p L a bπΦ ≡   (11) 

Nodes are selected by choosing pixels with unique Cantor values ( , , )L a bπ (Fig. 1D).  

2.5. Potts model definition 

Using the unique image super-pixels, a sparse graph can be constructed and clustered, assuming that similar pixels will be 
clustered into the same segment. The image super-pixels found by Cantor pairing are considered as nodes Φ . Edges 
between the ith and jth nodes are given by,  

 2 2 2( ) ( ) ( ) ,ijE L a b= ∆ + ∆ + ∆   (12) 

where L∆ , a∆ , and b∆  are the Euclidean distances between the respective L*a*b* components of the nodes (Fig. 1E). 
Graph model formed using this way contains very low number of unique nodes, and therefore for the Potts model based 
optimization, a full set of edges can be included, increasing the resulting classification accuracy.  

The graph is clustered by minimizing a Potts Model Hamiltonian[11],   

 1 ( ) ( ) ( ) ( , ),
2 ij ij ij i j

i j
E E E E E Eγ δ

≠

 = − Θ − + Θ − Φ Φ ∑   (13) 

where E  denotes the background (average) edge value, and iΦ  and jΦ  denote the ith and jth nodes, respectively. The 
Heaviside function is given by, 

 
1,

( ) ,
0, otherwise

ij
ij

E E
E E

 >
Θ − = 


  (14) 

and γ  is a scale parameter. Decreasing γ  results in segments with lower intra-community density, revealing larger 
communities. The Kronecker delta is given by, 

 
1,

( , ) ,
0, otherwise

i j
i jδ

Φ = Φ
Φ Φ = 


  (15) 

where ( , )i jδ Φ Φ  ensures that each node (spin) iΦ  interacts only with nodes in its own segment. We define 
{1,2, , }i S∈Φ   as the segment identity for the ith node, with S  the maximum number of segments, optimized by 

minimizing the Hamiltonian energy  . Here minimization of the Hamiltonian   partitions the graph space into connected 
segments. Unknowns involved are the segment identities iΦ  and S .  

2.6. Potts model optimization 

We optimize the Potts model Hamiltonian to obtain segments 
1 2
, , , ,

S
C C CΦ Φ Φ  where 

 ,
i

i

C CΦ Φ=


  (16) 

and,  

 .CΦ ⊆ Φ   (17) 
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Initially the nodes are assigned the same starting class CΦ  (Fig. 1G). The algorithm then moves pixel by pixel, and 
determine whether a pixel remains in its own segment, moves to a different segment, or forms a new segment, by 
computing the cost defined in Eq. (13) for each of such cases (Fig. 1H). Namely, suppose the segments are 

1 2
{ , , , }

s
C C CΦ Φ Φ  in the tth iteration with number of segments to be s ≤ S. The optimization process scans each node/pixel 

in the ith segment 
i

CΦ and investigates whether this pixel will remain in 
i

CΦ  or in 
j

CΦ with i ≠ j or can form a new segment 

1s
C

+Φ to deliver a smaller Hamiltonian score than the current score. The process continues until no energy lowering move 
happens in a complete cycle of scanning all the pixels. Practically, we found that optimal histopathological image 
segmentation is obtained within 5 such iterations.  

2.7. Full image segmentation 

The sparse graph clustering is used to intelligently divide the color space of the image into relevant segments. To obtain a 
segmented image, the Potts model Hamiltonian based clustering is applied to the full image using multiclass SVMs[10] 
trained on the Potts model output (Fig. 1I). The resulting multi-class SVM is used to determine the optimal segments of 
the input image pixels based on their L*a*b* values (Fig. 1J). Using this method, the initial unsupervised segmentation 
can be reused for images of a similar color space, and thus extends the initial segmentation to adjacent tissue regions. 

2.8. Multi scale segmentation 

To achieve multi-scale segmentation the above process is repeated using different scale parameters γ  (Fig. 1K). Here γ  
effects the sensitivity of the algorithm to small structure by tuning the algorithms sensitivity to image background. 
Segmentation using higher γ  values results in smaller communities and a greater number of segments (Fig. 1L), given by,   

 .Sγ →    (18) 

It is useful to change γ  exponentially, as to maintain a constant proportionality between scales. This helps to prevent 
generation of identical segmentations. Therefore, to select R scales:  

 exp( ) | {0,1, 2, , }.i i i Rγ = ∈     (19) 

3. RESULTS 
Intact kidney tissues from normal healthy untreated mice were collected (generously obtained by Dr. Rabi Yacoub, 
Department of Medicine – Nephrology, University at Buffalo) and sacrificed under their institutionally approved animal 
protocol. Tissues were formalin fixed, processed in a standard fashion, embedded in paraffin blocks, microtome sectioned 
at 2μm and stained with Periodic Acid-Schiff (PAS). Imaging was conducted using a whole slide bright field microscope 
(Aperio, Leica, Buffalo Grove, IL) using a 40X objective with 0.75NA. The computational method proposed here is 
independent of this imaging configuration, and no parameter tuning is required for obtaining the segmentation result 
presented in Fig. 2.  

To validate our method, we use histopathological glomerular images of healthy mice. The biological relevance of 
glomerular segmentation has been validated by board certified renal pathologist (co-author J.E.T.). We present an example 
of our multi-scale segmentation in Fig. 2. Fig. 2A shows the original RGB image of a renal tissue histopathology image, 
depicting renal glomeruli and tubules. Application of our computational segmentation method reveals reproducible 
structures by tuning the scale parameter γ . By tuning sensitivity to image background the scale parameter can be used to 
reveal unique information, with structures segmented at higher scales. Structures revealed are Bowman’s space ( γ  = 0.3); 
intra-glomerular nuclei ( γ  = 0.53); glomerular basement membrane, Bowman’s capsule, and mesangial matrix ( γ  = 0.75); 
mesangial matrix ( γ  = 2.0); intra- and extra-glomerular nuclei ( γ  = 8.3), and inner borders of tubular lumen ( γ  = 9.75). 
The segmented structures can be easily quantified to classify disease states; particularly, to determine digital bio-markers 
to classify early disease states for developing therapeutic intervention strategies to slow down disease progression.  

To analyze the performance of our method, we compared the performance against expert annotation. Renal tissue slices 
from 3 mice were stained using PAS and imaged. Staining was automated to reduce variability in the data. Ten glomeruli 
were randomly selected per mouse to be annotated by expert pathologist (J.E.T), to generate a gold standard. The best 
Bowman’s, lumen, and mesangial segmentations generated by our method were compared to this gold standard annotation, 
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yielding 98.9% precision and 93.7% accuracy. Our method accomplished this result with an average of 85× faster speed 
than the expert annotation per image. 

 
Figure 2. Segmentation of structures with a varying scale parameter. The scale parameter is tuned to reveal pertinent 
structures/scales in the image. Processing time is 5-15sec for a given scale. (A) RGB histopathology image of a renal glomeruli and 
extended tubules, containing ~106 pixels. (B) Number of segments estimated by varying the scale parameter between 0 and 10. (C-H) 
The segmented structures with increasing scale. Higher scale reveal increasing number of structures. Relevant structures are marked 
with white arrows. Bowman’s capsule and space, intra- and extra-glomerular nuclei, mesangial matrix, basement membrane, and inner 
border of the tubule are revealed at varying scale. NOTE: Segment color is used to delineate the compartments. It is not consistent across 
scales.   
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4. CONCLUSION
We have developed a robust method for extracting image features from histopathological images with computational 
efficiency unparalleled by similar unsupervised methods. Our computational method is a step towards simultaneous and 
rapid quantification of pertinent structures in multi-scale for computational renal pathology. The strength of our method is 
its lack of parameters, segmentations achieved by our method can be easily selected and classified by experts simplifying 
quantification tasks in renal pathology, with potential to be a basis of powerful tools for diagnostic aid. The potential of 
unsupervised methods for segmentation tasks in pathology, and all of medicine remains relatively unexplored, and with 
proper development, has potential to greatly improve the quality of care through more concrete (quantified) evaluation of 
disease states. 

Algorithmically, we have exponentially improved the performance of Potts Model based image segmentation. Our 
statistical assumptions reduce the complexity of the graphical image representation, allowing complex segmentation tasks 
which were previously unobtainable in a reasonable timescale. We hope this discovery will not only advance the use Potts 
Model based segmentation, but apply to other similar unsupervised methods. To better optimize our method, the effects 
of scale on segmentation output needs to be studied, and a method to choose applicable scales for obtaining biologically 
relevant structures developed. We believe that multi-scale segmentation is what sets Potts Model segmentation apart, and 
a concrete understanding of the scale parameter therefore needs to be established. Further work needs to be done to validate 
the accuracy of our method against established approaches such as spectral clustering[13]. We hope to apply our method 
for data segmentation in fields such as oncology, genomics, as well as non-biological problems, and aim to call on experts 
in their respective fields to evaluate such applications. 
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