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Introduction
New advancements in spatial tissue imaging allow
for the generation of large datasets that anchor tran-
scriptomic and proteomic expression on histology
with high granularity. These highly multiplexed cel-
lular and molecular data provide researchers with an
entirely new way to interpret tissue morphology and
generate visual clues that may augment existing
gold-standard histopathologic interpretation. To
best interpret these multimodal data, artificial intel-
ligence methods are indispensable to fuse bright-
field histology with diverse spatial -omics methods,
including spatial transcriptomics; multiplex fluores-
cence imaging, including codetection by indexing
(CODEX); imaging mass spectrometry; miFISH;
and imaging mass cytometry.1–4

Use Case
A 48-year-old White man with hypertension and

well-controlled diabetes mellitus but no known kid-
ney disease presented to the emergency department
in respiratory distress. He later developed hypoten-
sion and pneumonia-related respiratory failure re-
quiring intubation. He cycled through antibiotics
before improvement and developed AKI on hospital
day 17, requiring KRT. He was discharged on day
31, yet remained dialysis-dependent. A kidney bi-
opsy revealed mild arteriolar hyalinosis and patchy
acute tubular necrosis (ATN) with occasional foci of
monocytic and lymphocytic infiltrates and occa-
sional mitotic tubular cells. Ten percent of the glo-
meruli were sclerosed, and ,20% of the tubule-
interstitium was affected by fibrosis or atrophy.
Traces of linear IgG deposits were seen on immu-
nofluorescence. Electron microscopy revealed mild
thickening of the glomerular basement membrane
without immune complex deposition, consistent
with early diabetic changes. After biopsy, the dif-
ferential diagnosis was (1) pending recovery of
ATN, (2) nonrecovery with early signs of CKD, or
(3) interstitial nephritis.

The biopsy results did not give insight into re-
covery or interstitial nephritis and AKI. An approach
that integrates molecular analysis may help provide
more information for clinicians and pathologists.
Specifically, a fused histology and spatial -omics
data would identify mitotic tubular cells and their
distance to fibrosis, necrosis, and inflammation. CO-
DEX protein immunofluorescence can characterize

inflammation in specific immune cells and injury
biomarkers in adjacent tubules. Spatial transcriptom-
ics can identify injured tubules and their likelihood
of leading to fibrosis. Transcriptomic evidence of
receptor ligand interactions can indicate whether
damage to epithelial cells arises from nearby immune
cells. These technologies provide a comprehensive
understanding of biologic processes compared with
standard biopsy interpretation.

Select Spatial -Omics Technologies
We focus on spatial transcriptomics (VISIUM) and

CODEX as examples of state-of-the-art transcriptomic
and multiplex protein imaging modalities because of
their ability to register molecular data with bright-
field microscopy.

Spatial Transcriptomics
Current spatial transcriptomics technologies localize

mRNA expression at the tissue microenvironment,
cellular, or subcellular level. Recent advances in multi-
plexed hybridization technologies, such as merFISH,
CosMX, or Xenium, allow single-cell–based transcrip-
tomic signatures of approximately 700–1000 super-
vised transcripts.5 By contrast, in situ capturing
methods, such as VISIUM Spatial Transcriptomics,
offer nearly whole transcriptome signatures. This tech-
nology uses unique barcodes to localize mRNA ex-
pression to a spot in a known location that overlies
hematoxylin and eosin histology.1,3 Spots are uni-
formly distributed across a tissue, allowing for a
deep transcriptomic signature. With a robust single-
nucleus RNA sequencing atlas, spots may be decon-
volved to determine proportions of specific cell types,
states, and neighborhoods.6,7

CODEX
CODEX is a fluorescence-based molecular imag-

ing method that facilitates the capture of highly
multiplexed images for a high number of protein
markers (approximately 40). Researchers have dem-
onstrated the ability to capture cellular diversity in
healthy and pathologic kidneys.3,4,8 The key advan-
tage of CODEX is the ability to render equivalent
spatial resolution in -omics as with bright-field his-
tology, allowing for one-to-one mapping of cell
identity to underlying morphometry. However, in-
corporation of new targets requires considerable
optimization efforts.

1Department of
Biomedical
Engineering,
University of Florida
College of Engineering,
Gainesville, Florida
2Department of
Medicine–Division of
Nephrology and
Hypertension, Indiana
University School of
Medicine,
Indianapolis, Indiana
3Department of
Medicine–Division of
Nephrology,
Washington University
School of Medicine, St.
Louis, Missouri
4Department of
Medicine–
Quantitative Health,
University of Florida
College of Medicine,
Gainesville, Florida
5Department of
Electrical and
Computer Engineering,
University of Florida,
Gainesville, Florida

Correspondence:
Dr. Michael T. Eadon,
950 West Walnut
Street R2, 202,
Indianapolis, IN
46202, or Dr. Pinaki
Sarder, Department of
Medicine, Division of
Nephrology, 1600 SW
Archer Road,
Gainesville, FL 32610.
Email: meadon@iupui.
edu or pinaki.sarder@
ufl.edu

www.cjasn.org Vol 18 May, 2023 Copyright © 2023 by the American Society of Nephrology 675

D
ow

nloaded from
 http://journals.lw

w
.com

/cjasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dgG

j2M
w

lZ
LeI=

 on 06/21/2023

https://orcid.org/0000-0003-3066-2876
https://doi.org/10.2215/CJN.0000000000000146
mailto:meadon@iupui.edu
mailto:meadon@iupui.edu
mailto:pinaki.sarder@ufl.edu
mailto:pinaki.sarder@ufl.edu


Note on Tissue Preparation
Spatial -omics technologies are typically optimized for

frozen sections of 7–10 mm thickness. However, formalin-
fixed, paraffin-embedded sections with a thickness be-
tween 2 and 5 mm are the gold standard for diagnosis.
Generating spatial -omics data for thin, formalin-fixed,
paraffin-embedded sections is a topic of growing interest.

Publicly Available Databases
The Human BioMolecular Atlas Program hosts a data-

base of diverse spatial -omics data for normal reference
tissue and organs. The Kidney Precision Medicine Project
hosts similar data for patients with CKD and AKI. These
data are available through the consortium web portals.
Additional clinical metadata are often available on request.

Multi-Omics Data Fusion
The question remains how to best use spatial -omics

data to drive digital health. Fusion of multi-omics data
with bright-field histology is a growing topic of interest

for pathologists and computational researchers alike
(Figure 1). The fused dataspace will allow biologists to
quickly reference structural and functional relationships
of cells in the context of a whole biopsy.
A variety of machine learning (ML) approaches are being

developed to directly translate bright-field histology im-
ages into spatially mapped -omics data. Before input into a
ML model, spatial -omics datasets must first be registered
to align molecular data with histology. Because these
digitally scanned images are exceedingly large (gigapixel
area), a patch-based approach is often applied to train
models on small portions of slides at a time.9 To ensure
that these models are robust to high-dimensional -omics
data, it is often necessary to distill the incoming informa-
tion so that only the most important features are consid-
ered. Classical ML methods focused heavily on this
dimensionality reduction step to overcome limitations in
computational hardware. Currently, vast ML infrastruc-
tures (Amazon Web Services Google Collab, Kubeflow,
etc.) allow extremely large models to be constructed that
are specially equipped to concurrently digest thousands of

Figure 1. Deep learning for fusion of two popular spatial technologies. A deep learning model using diverse spatial -omics data as the input
and spatial mapping of -omics data on bright-field histology as the output. (A) Glomerulus image from varying modalities including
brightfield histology, overlaid spot locations for Visium Spatial Transcriptomics, and Co-Detection by Indexing (CODEX) image. (B) The
alignment and quality control step ensures accurate registration of spatial-omics data as well as read quality of transcriptomic or fluo-
rescence data. (C) Representative deep learning model architecture consisting of two sets of convolutional filter banks to first compress input
data into a low-dimensional vector and then decode that low-dimensional input and render predictions. (D) Cellular characterization as the
output of an ML model, providing insights into both cell-type composition for a given region of interest and an estimate of cellular health
(cell state). (E) Comparison of spatial technologies. ML, machine learning; PAS, periodic acid–Schiff; QC, quality control.
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input values. However, dimensionality reduction of spatial
-omics data in general is useful in the context of studying
known biological processes. For example, VISIUM data
may be better leveraged by translating gene expression
into proportions of select cell types within tissue micro-
compartments (e.g., glomeruli, tubules, vessels).6 Similarly,
one can refine CODEX images by isolating particular mark-
ers contained within these microcompartments as a better
basis of comparison across many individuals. By refining
the data dimensionality before injecting to large models,
we can reduce the learning gap that these models must
overcome and better understand and apply these models to
answer important questions.
Emerging research in molecular imaging, combined

with novel ML approaches, has the potential to provide
the medical community with ways to analyze histological
data at a depth never before possible. Whether it is
with CODEX or spatial transcriptomics, these high-
dimensional datasets require the development of com-
plex models to achieve robust, explainable performance
for biological and medical applications.8,10 Although
challenges abound, there are exciting opportunities for
potential developers of data fusion techniques for inno-
vation, developing tools for clinicians to improve patient
care. Meeting these challenges requires collaborative ef-
forts of data and image scientists, clinicians, and biolo-
gists to formulate the best algorithmic solution in a team
science approach.
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