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The Banff Digital Pathology Working Group (DPWG) was established with the goal to
establish a digital pathology repository; develop, validate, and share models for image
analysis; and foster collaborations using regular videoconferencing. During the calls, a
variety of artificial intelligence (AI)-based support systems for transplantation pathology
were presented. Potential collaborations in a competition/trial on AI applied to kidney
transplant specimens, including the DIAGGRAFT challenge (staining of biopsies at multiple
institutions, pathologists’ visual assessment, and development and validation of new and
pre-existing Banff scoring algorithms), were also discussed. To determine the next steps, a
survey was conducted, primarily focusing on the feasibility of establishing a digital
pathology repository and identifying potential hosts. Sixteen of the 35 respondents
(46%) had access to a server hosting a digital pathology repository, with
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2 respondents that could serve as a potential host at no cost to the DPWG. The 16 digital
pathology repositories collected specimens from various organs, with the largest
constituent being kidney (n = 12,870 specimens). A DPWG pilot digital pathology
repository was established, and there are plans for a competition/trial with the
DIAGGRAFT project. Utilizing existing resources and previously established models,
the Banff DPWG is establishing new resources for the Banff community.

Keywords: Banff, digital pathology, artificial intelligence, machine learning, image analysis

INTRODUCTION

The Banff Digital Pathology Working Group (DPWG) was
formed in 2019, followed by a publication describing the
DPWG’s main goals and the current state of transplant digital
pathology [1]. Since then, the DPWG meets regularly in video
conferences (nearly every 2 weeks) to discuss new digital
pathology initiatives, innovative investigations, and digital
pathology’s current status and future (2), particularly
computer vision applied to transplantation, considering the
fact that digital pathology has enabled the development of
“computational pathology” as a new science [2–4].
“Computational Pathology” is a novel approach to precision
medicine incorporating multiple data sources using artificial
intelligence (AI) to generate actionable knowledge to improve
disease diagnosis, prognostication, and prediction [5].

The development of new digital pathology-based tools, computer
vision algorithms, andmachine learning (ML)models for the study of
kidney diseases has stimulated the pathology and nephrology
community to build large digital pathology repositories to allow
for the integration of data from clinical, molecular, pathology, and
other domains. While this effort has been in place for over a decade
for native kidney diseases [5], the use of digital pathology repositories,
computer vision, and computational pathology in transplant
pathology remains largely unexplored.

As also detailed in the last Banff Meeting Report [6] and the
DPWGs’ first paper [1], the DPWG’s goals are detailed in Tables 1,
2; Figure 1. Notably, future plans can be summarized in three aims:

• Aim 1: Image banks and/or digital pathology repositories for
benchmarking algorithms so that research groups can test their
AI and other algorithms similar to what is being done in the
computer science community overall, with ImageNet
supervised natural image classification being a main example.1

• Aim 2: Algorithms will developed for the transplant
community. One future goal potentially includes the
release of “official” Banff algorithms that could be used
by the Banff community and beyond. As mentioned in the
previous Banff DPWG working group paper, these could
include targeted, handcrafted algorithms (e.g., for
parameters such as fibrosis, inflammation, steatosis, etc.)
[1]; or these could include thoroughly validated AI/ML
algorithms. Furthermore, data pipelines for the

integration of “–omic” data could be provided so that
centers could have mechanisms for mining data within
their center as well as sharing with other centers.

• Aim 3: Competitions or trials will be conducted so that
groups can compare their algorithms on standard transplant
pathology image sets.

This current DPWG paper serves as an update on the DPWG’s
progress with selected examples and is not a comprehensive
review, and we apologize for related studies that are not cited.
The DPWG’s survey research on the current state of digital
transplant pathology will be covered, and additional details
regarding each of the three aims above will be discussed.

IMAGE BANK SURVEY

A survey was conducted from 27 April, 2020, to 23 July, 2020,
primarily to determine image bank possibilities for the DPWG.
Questions were sent via SurveyMonkey (Palo Alto, California,
United States) to both the NEPHROL and NEPHNPPT
Discussion Groups (with 701 members and 456 members,
respectively) moderated by Kim Solez aimed primarily toward
renal pathologists and clinicians interested in renal pathology.
The NEPHROL group includes mostly nephrologists and
pathologists, and the NEPHNPPT group is a subset of the
Renal Pathology Society (RPS) membership.

The Banff DPWG Image Bank Survey had 35 respondents from
13 countries, 19 from the US, 4 Canada, 2 Netherlands, and one each
from 10 countries (Supplementary Material). Most (24 or 69% of
respondents) specified pathology as their specialty. Of these, 16 (46%)
specified that they had a server to manage whole slide images (WSIs)
frommultiple institutions, and these used various server software and
image formats and had a range of storage and bandwidths. In this
regard, it is recognized that setting up servers and workflows is quite a
complex endeavor; and our survey reflected these complexities [7–10].

Of 13 answering a question regarding the ability of their server to
de-identify slide information (including the slide label) automatically,
9 (69%) responded yes; 2 (15%) no; and 2 (15%) not sure. Of
12 answering a question regarding their server’s ability to allow
customized and commercial algorithms installation, 8 (67%)
answered yes; 2 (17%) no; 1 (8%) only customized algorithms;
and 1 (8%) not sure. Of 10 answering a question regarding their
server’s ability to allow the correction/standardization of staining
variability and other variables in images from multiple laboratories, 9
(90%) answered yes.1https://www.image-net.org/
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Survey questions regarding the possibility of image bank
hosting were asked; and of nine responding, 7 (78%) had an
associated cost; and only 2 (22%) had no associated cost. The two
responding there would be no cost were contacted; and it became
clear that one of these would not be able to host the image bank
due to logistical issues. Thus, based on the survey, only one
respondent at Georgia State University could host an initial image
bank pilot. Later discussions in the community revealed another
image bank could possibly be hosted at RWTH Aachen
University in the future, particularly regarding specimens in
Europe subject to European Union General Data Protection
Regulation (EU GDPR).

Survey questions also covered existing image bank material
available among respondents. Of 28 respondents responding to the
question of whether they had an existing transplant WSI repository,
16 (57%) said they had such a repository.When asked for the number
of their specimens, the combined specimens included 12,870 kidney,
670 heart, 55 pancreas/islet, 50 lung, 30 liver, 20 intestine, and
2 vascularized composite allograft. Thus, the survey showed that

the community already has a substantial specimen number; however,
the number of specimens obtained is likely an underestimate.

It is likely that this survey could be repeated in the future with
an increased response rate, since interests in AI, ML, and deep
learning (DL) are likely increasing [11]. Furthermore, the survey
was conducted during the COVID-19 pandemic, which could
have hindered response rates. In the future, such a survey could
likely find additional servers and material for collaboration.

AIM 1: IMAGE BANK AND DIGITAL
PATHOLOGY REPOSITORY PILOT

Our Banff DPWG conducts discussions, planning, testing, and
implementations of appropriate vehicles for pathology AI method
dissemination, deployment, and comparison readily accessible by
end users. An image bank or digital pathology repository is a goal
that the Banff DPWG would like to achieve, similar to the “Big
Picture” European digital pathology project,2 the Nephrotic
Syndrome Study Network (NEPTUNE),3 and Kidney Precision
Medicine Project (KPMP4). In contrast to desktop applications,
web-based platforms are preferred bymany since they do not require
any user-involved installation process [12]. Although some web-
based tools have been developed, they are either commercial
software with license purchase requirement [12] or limited for
new algorithm integration (e.g., Omero [13]).

The one respondent available to host a pilot for the DPWG is the
Digital Pathology Laboratory (DPLab5), a publicly available web
platform allowing researchers to visualize, annotate, analyze, and
share 2D and 3D pathology images via web-enabled devices. This
platform allows users to upload their own WSIs, annotate regions of
interest, invoke AI analysis methods, visualize analysis outputs, and
download outputs for follow-up statistical comparisons.Due to itsweb-
based framework, DPLab enables WSI annotation and analysis data
sharing. SinceAImethod training and execution relies on a reliable and

TABLE 2 | Banff digital pathology working group (DPWG) issues and plans. The
Banff DPWG issues and future plans are depicted as further refined through
DPWG discussions (1).

Primary goals

Aim 1: Image bank for AI/ML & other algorithms
Aim 2: Algorithms
Algorithm validation using different institutions and laboratory protocols
Algorithms for classification (e.g., “official” Banff)
Banff Parameter algorithms (e.g., IFTA & Inflammation)
Aim 3: Competition/trial
Competition/trial to test algorithms

Secondary Goals

Computing, AI/ML, nanotechnology, slide numerationetc.
Standardization of practices
Decrease interobserver variability
Classification using integrative approaches
Precision diagnostics, molecular, & therapeutics, NLP, etc.
Archetypes validated across multiple institutions

Abbreviations: AI/ML, artificial intelligence; machine learning; IFTA, interstitial fibrosis and
tubular atrophy; NLP, natural language processing.

TABLE 1 |Banff digital pathology working group (DPWG) issues and plans. The Banff DPWG issues and future plans are depicted as laid forth in the original DPWGpaper (1).

Topic Items

Issues to address • Digital automation of pathology practice
o Computing, Artificial intelligence (AI), Nanotechnology, Machine learning, Slide numeration

Future plans • Standardization of practices
• Classification for studies using integrative approaches
• Interstitial fibrosis and tubular atrophy (IFTA) scoring
• Inflammation scoring
• Algorithms to fit to the classification and decrease interobserver variability (e.g., “official” Banff algorithms)
• Validation of algorithms using slides prepared at different institutions with different laboratory protocols (processing,

staining, etc.)
• Archetypes to be validated across multiple institutions
• Delivery of precision diagnostic, molecular pathways, and therapeutics (e.g., through established data pipelines and

natural language processing)
• Image bank for groups to test AI and other algorithms

2https://bigpicture.eu/
3https://www.neptune-study.org/
4https://www.kpmp.org
5https://dplab.gsu.edu/
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powerful computational infrastructure, DPLab allows running these AI
methods without local computational resources. All requested analysis
jobs from the front end are executed through a backend computational
environment, addressing a frequent WSI analysis computational
obstacle. Currently, DPLab is equipped with numerous WSI
analysis algorithms, ranging from color deconvolution, cell
detection, nuclei segmentation, histology component quantification,
to serialWSI image registration (with some demonstrated in Figure 2).
Because DPLab is designed as an open environment, AImethods from
the research community can be contributed for method enrichment,
validation, and comparison. In the future, additional components are
planned for DPLab, such as a quality control component (e.g., similar
to those seen in the open-source tool HistoQC [14]). As this software
becomes more mature, we envision it and others like it can become
useful tools for digital pathology community [12].

Complete digital pathology implementation will require digitization
of all workflow steps. For example, in renal pathology, this will require
light, immunofluorescence, and electron microscopy digitization.
Regarding this, immunofluorescence staining is an integral part of
kidney transplant biopsy evaluation, both forC4d staining for detection
of antibody-mediated rejection and for immunoglobulins and other
complement components for recurrent and de novo
glomerulonephritis detection. Factors to consider include the ability
to support automated scanning with minimal operator input, available
immunofluorescence filters, scanning speed, automated tissue
detection, image quality, tissue focusing ability, scanning
magnification, degree of image bleaching (fading), and price. Major
challenges with currently available immunofluorescence slide scanners
include inability of scanners to focus on tissue, inability to reflect
negative/dim staining, and excessive human technologist time for
scanning setup (Dr. Lynn Cornell in DPWG communications).

Digital pathology repositories can include a variety of “omic” data
types in the future. Digital pathology “pathomic” data can be included

with other “omic” data including genomic, transcriptomic, proteomic,
and metabolomic data. “Pathomics” refers to the morphological
examination of tissue on the macroscopic, microscopic, and
ultrastructural level. “Pathomics” was used at least as far back as a
2007 editorial by Robert Colvin (11, 12) commenting on a study
investigating microarray analysis of rejection that later become
available in the molecular microscope diagnostic (MMDx) system
(13). Using this terminology, the “pathome” can refer to the entirety of
morphological histology features, particularly when examined using
enhanced ancillary techniques; and enhanced techniques to examine
the “pathome” can be termed “Next-Generation histoMorphometry
(NGM).”Ofnote, standard “omic” technologies are increasingly being
applied in a “spatial”manner (e.g., spatial transcriptomics and spatial
proteomics) [15]. Digital pathology repositories will likely be crucial
for the integration of “pathomic” with other “omic” data.

AIM 2: AI/DEEP LEARNING ALGORITHMS

To effectively develop deep learning (DL)-based support systems
for diagnosis and research, including in transplant pathology,
three main prerequisites are needed (e.g., when thinking of setting
up transplant digital pathology central resources), including: 1)
hardware and software infrastructure, 2) interdisciplinary expert
teams, and 3) diverse and clinically annotated datasets [16].

(1) The hardware and software infrastructure are becoming more
available and affordable, and many pathology labs now have at
least partial digital infrastructure. Based on a particular study’s
extent and the computational demands of newer DL
architectures, however, the introduction of robust digital
pathology resources within a single institution can be
challenging. Digital pathology and WSIs produce the largest

FIGURE 1 | The Banff Digital Pathology Working Group (DPWG) main aims are shown. The primary aims of the Banff DPWG include 1) image bank/collection
establishment, to possibly include other data in digital pathology repositories (digital pathology repositories); 2) algorithm sharing platform initialization; and 3)
competition/trial organization. Multiple solutions for each of these aims may be possible. After competition/trial conduction among the Banff community and other
collaborators, the algorithm performance will be characterized in a process that will affect the future performance and sharing of algorithms; and thus, the
competition(s)/trial(s) will provide “feedback” to algorithm sharing. Ultimately, effective, precision patient care could be provided with Banff algorithm scores. (The “Banff
Conference” and “Aim 3” image were produced by Kim Solez using DALL-E 2.).
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imaging data in clinical medicine. When setting up large digital
pathology repositories, sufficient storage capacity is required,
which can easily be in the petabyte (PB) range. Such storage
must be secure, both in terms of security of access and sufficient
backup. Modern DL systems are increasingly computationally
expensive to train due to the model size, with many trainable
parameters and large datasets. Thus, central high-performance
computing (HPC) centers or cloud providersmight be needed for
model development. Frequently, such HPC centers (or cloud
providers) are not used to handling sensitive medical data and
privacy concerns (e.g., HIPPA and GDPR); and the legal aspects
can be complicated. Also, such centralized algorithmic training
requires secure data transfer between institutions. This may also
be challenging for security and compliance. Cloud providers and
download possibilities can tackle some of these issues. Another
potential solution for this could be the use of federated learning
approaches, which are becoming more popular not only in
computational pathology. These approaches train (parts of
the) models on locally stored data (i.e., without the need to
move the data from the hospitals) [17–19]. Such federated
approaches require scaling up local computing power, which,
in our recent experience, is not available everywhere, and
sometimes not even considered in some larger repositories.
This is not completely surprising, since digital pathology
possibilities are still new and emerging. Digital pathology
infrastructure maintenance costs (e.g., security updates and
other services) need to be kept in mind and can present a
challenge when aiming for a long-term digital pathology
repository. Thereby, solutions for long-term infrastructure
financing are required, and might be a challenge.

(2) AI/DL development and infrastructure maintenance requires
experts from information technology (IT), computer science,
medicine, research, and other areas [20]. Such an
interdisciplinary team is required 1) to ensure a relevant use
case and the datasets are defined for meaningful application
scenarios in a realistic workflow, 2) a suitable model architecture
can be modified to fit the use case, 3) software best practices are
followed during training, and 4) to ensure model safety.
Ultimately, models should be thoroughly audited before

clinical testing, uncovering potential risks and developing
mitigation strategies [21]. User studies should test whether
systems will be useful in later day-to-day work. The workforce
needs of industry vs. academia may be in competition.
Generating an environment that motivates IT and AI experts
to join academia will be imperative to building up domain-
specific expert teams. Also, such teams should have a minimal
“critical” size of the particular specialty (e.g., Having only a single
AI or IT expert makes the team heavily dependent on a single
person, while it does not provide a suitable environment for
discussion and exchange for the expert.). It is our experience that
large and strongly interdisciplinary teams, directly embedded
within the specific application domain might be most efficient in
new approach development testing. This direction also helps
educate “hybrid” experts (e.g., pathologists with expertise in AI
development and AI developers knowledgeable of real-world
pathology workflows). Such “hybrid” experts can be augmented
by automated systems such as those that help codify the
complexity of the Banff classification system [22].

(3) Finally, and currently one of the major challenges in this field, is
the availability of relevant, sufficiently large datasets. Sample size
is determined by the ML system’s efficiency and the problem
complexity. Datasets should be multicentric and reflect the
population(s) in which the system will ultimately be used. In
addition, it is important to invest time uncovering existing dataset
biases before fitting a model to the data and reducing biases as
much as possible [23, 24]. To uncover such biases, datasets must
be deeply phenotyped, and in the case of pathology, enriched at
least with clinical and pathological data. It is essential to validate
any DL models using independent cohort(s), which were not
used for DL training. While tremendous thought has previously
been given to the collection of training datasets [2], only recently
have recommendations for the collection of test datasets been
issued for the case of computational pathology [20]. Test
datasets must be independent from the development datasets.
The ML community has long recognized the need for diverse
multi-center datasets to reliably assess the generalizability of DL
systems. This is now also well established in computational
pathology and should be a common standard [2].

FIGURE 2 | Digital Pathology Laboratory: a publicly available web platform for multi-dimensional pathology image analytics example image manipulations are
shown, including the following: (A) A representative WSI visualized from DPLab at multiple image resolutions; (B) Cell detection result in a user-annotated rectangle
region; (C) Liver fibrosis quantification with a region annotated by a free-hand annotation tool; (D) Detailed 3D liver tissue sub-volume visualization after serial WSI
registration and collagen quantifications.
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One example of how the integration of all prerequisites and joined
international cooperation can lead to promising DL algorithm
development was previously shown in the DEEPGRAFT study,
which involves transplant biopsy weakly-supervised slide-level
diagnosis classification using DL [25]. This is currently the largest
multicentric dataset of renal transplant biopsies assembled and
analyzed centrally, with more than 5,000 WSIs, including
consecutive biopsies from a center not included in training,
representing a “real-world” scenario and enabling validation and
assessment of the model’s generalizability.

Other novel algorithms for efficiently analyzing very large renal
tissue biopsy digital WSIs have been integrated into ML pipelines for
nephropathology. The developed tools employ a human-AI-loop
(HAIL) approach [26] via integrating human with AI for efficiently
detecting and segmenting multi-compartmental structures (e.g.,
glomeruli, tubules, interstitium, and arteries and arterioles). The
tool’s performance is shown in computational histologic
classification of diabetic nephropathy [27], as well as computational
detection and segmentation of interstitial fibrosis and tubular atrophy
[28]. The tool has been extended to computationally detect and count
podocytes from WSIs, and also subsequent feature extraction for
various inference studies [29]. HAIL’s utility has been further shown
via integrating the tool with the VIPR (Validated Identification of Pre-
Qualified Regions) algorithm [30]. HAIL operates at segmenting large
renal structural levels, and VIPR operates at deriving renal micro-
compartments using pixel level vector features. In tandem, these tools
are being used to conduct unsupervised classification of tubules in the
KPMP. Features quantified from HAIL-derived image structures are
currently being used for fusing with tissue molecular signatures, such
as those derived by CODEX and spatial transcriptomics, to discover
newmolecularly distinct structural motifs with implications in chronic

kidney disease and acute kidney injury. It is anticipated that the tools
developed herein will contribute to renal transplant biopsy assessment
to automate Banff scoring for chronicity assessment as well as
automatically predict graft outcome from pixel level image features.

While retrospective studies have inherent value in showing
system applicability or useability, prospective evidence of the
clinical benefit of DL systems must be generated through well-
designed clinical trials. Promising studies include those examining
the classification of rejection versus other diseases [25] and antibody-
mediated rejection under Banff criteria [31] in the kidney; and in
cardiac endomyocardial biopsies, allograft rejection has been
distinguished from benign mimics (Quilty B lesions) using AI
[32]. However, clinical trials implementing DL systems are
currently largely missing in the field of computational pathology,
but in some scenarios might also be hard to provide.

AIM 3: COMPETITION/TRIAL AND
CURRENT IMAGE ANALYSIS TRIAL WORK

As mentioned previously, our last aim deals with competitions or
trials will be conducted so that groups can compare their algorithms
on standard transplant pathology image sets. In this regard, the Banff
DPWG has an ongoing collaboration that has been discussed in
DPWG meetings entitled “DIAGGRAFT: leveraging artificial
intelligence technology for accurate quantitative histological
diagnostic assessment of transplant renal biopsies.” The Dutch
Kidney Foundation recently awarded a Success Accelerator Grant
for the DIAGGRAFT project. DIAGGRAFT was started in January
2022 by Dominique van Midden, Meyke Hermsen, Jeroen van der
Laak, et al, and will be executed in close collaboration with the

FIGURE 3 | The DIAGGRAFT Challenge Work Plan is shown. Abbreviations: FFPE, formalin-fixed paraffin-embedded; PAS, periodic acid Schiff; WSI, Whole Slide
Images; IHC, immunohistochemistry.
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DPWG. This project builds upon former research by Hermsen et al.
[33, 34] that developed AI (more specifically: DL) for automated
assessment of histopathologic features in digitized kidney tissue
sections. DIAGGRAFT aims to take developed AI a step further,
extending these techniques and preparing them for large-scale
research- and even diagnostic use. The DIAGGRAFT consortium
will organize a so-called “grand challenge”: an international
competition, similar to challenges previously organized (e.g.,
PANDA [35] for prostate cancer,6 CAMELYON [36–38] for
breast cancer and lymph node metastasis, and other Kaggle
efforts7, 8). In the DIAGGRAFT challenge, a large, annotated,
multi-center data set will be established and provided to
participants with the goal to collectively build AI for inflammatory
cell detection in periodic-acid Schiff-stained slides. The best
inflammatory cell detection model(s) from the DIAGGRAFT
challenge will be combined with existing structure segmentation
AI to quantify Banff classes. In the last part of DIAGGRAFT, AI
will be validated on a large patient cohort, originating from multiple
international medical centers and scored by an expert renal
pathologist panel. DIAGGRAFT aims to develop powerful DL
tools for objective and reproducible Banff scoring, validated in a
multicenter setting against graft function and survival. The resulting
DL models will be made available to the Banff community for
subsequent validation studies. DIAGGRAFT is visually displayed
in Figure 3.

CONCLUSION

The Banff DPWG plans to continue the efforts of fostering the
establishment of image banks and digital pathology repositories,
of stimulating algorithm development, and supporting the
validation of these algorithms. The DPWG’s efforts will be
disseminated through a variety of venues (e.g., during the
annual meeting of the American Society of Transplantation),
to stimulate engagement of the entire transplant community.
Funding sources are being explored to financially support efforts
of the DPWG. Digital pathology techniques allow computational
pathology, which provides automated histopathology analyses
with more throughput scalability, reproducibility, and precision
[5, 15, 39–42]. Indeed, these new technologies will essentially
allow numerous novel manipulations, such as the translation/
augmentation of one stain to another [43, 44]. It is possible that
AI/ML will serve as a “gold standard” in some sense, although we
foresee AI/ML augmenting pathologists rather than replacing
them as the “gold standard.” Algorithms and other advances for
the Banff community may eventually arise from these efforts,
with the ultimate goal of providing more effective, precision
patient care.
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